RESUMEN
Cytochrome P450 enzymes are known to catalyse bimodal oxidation of aliphatic acids via radical intermediates, which partition between pathways of hydroxylation and desaturation1,2. Developing analogous catalytic systems for remote C-H functionalization remains a significant challenge3-5. Here, we report the development of Cu(I)-catalysed bimodal dehydrogenation/lactonization reactions of synthetically common N-methoxyamides through radical abstractions of the γ-aliphatic C-H bonds. The feasibility of switching from dehydrogenation to lactonization is also demonstrated by altering reaction conditions. The use of a readily available amide as both radical precursor and internal oxidant allows for the development of redox-neutral C-H functionalization reactions with methanol as the sole side product. These C-H functionalization reactions using a Cu(I) catalyst with loading as low as 0.5 mol.% is applied to the diversification of a wide range of aliphatic acids including drug molecules and natural products. The exceptional compatibility of this catalytic system with a wide range of oxidatively sensitive functionality demonstrates the unique advantage of using a simple amide substrate as a mild internal oxidant.
Asunto(s)
Carbono , Cobre , Hidrógeno , Lactonas , Amidas/química , Amidas/metabolismo , Carbono/química , Catálisis , Cobre/química , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/química , Hidrógeno/química , Hidrogenación , Lactonas/química , Metanol/química , Oxidantes/química , Oxidantes/metabolismo , Oxidación-ReducciónRESUMEN
Immune checkpoint inhibitor (ICI) treatment has created the opportunity of improved outcome for patients with hepatocellular carcinoma (HCC). However, only a minority of HCC patients benefit from ICI treatment owing to poor treatment efficacy and safety concerns. There are few predictive factors that precisely stratify HCC responders to immunotherapy. In this study, we developed a tumour microenvironment risk (TMErisk) model to divide HCC patients into different immune subtypes and evaluated their prognosis. Our results indicated that virally mediated HCC patients who had more common tumour protein P53 (TP53) alterations with lower TMErisk scores were appropriate for ICI treatment. HCC patients with alcoholic hepatitis who more commonly harboured catenin beta 1 (CTNNB1) alterations with higher TMErisk scores could benefit from treatment with multi-tyrosine kinase inhibitors. The developed TMErisk model represents the first attempt to anticipate tumour tolerance of ICIs in the TME through the degree of immune infiltration in HCCs.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral , Neoplasias Hepáticas/tratamiento farmacológico , InmunoterapiaRESUMEN
Primary hyperoxaluria type 1 (PH1) is a severe genetic metabolic disorder caused by mutations in the AGXT gene, leading to defects in enzymes crucial for glyoxylate metabolism. PH1 is characterized by severe, potentially life-threatening manifestations due to excessive oxalate accumulation, which leads to calcium oxalate crystal deposits in the kidneys and, ultimately, renal failure and systemic oxalosis. Existing substrate reduction therapies, such as inhibition of liver-specific glycolate oxidase (GO) encoded by HAO1 using siRNA or CRISPR-Cas9 delivered by adeno-associated virus, either require repeated dosing or have raised safety concerns. To address these limitations, our study employed lipid nanoparticles (LNPs) for CRISPR-Cas9 delivery to rapidly generate a PH1 mouse model and validate the therapeutic efficacy of LNP-CRISPR-Cas9 targeting the Hao1 gene. The LNP-CRISPR-Cas9 system exhibited efficient editing of the Hao1 gene, significantly reducing GO expression and lowering urinary oxalate levels in treated PH1 mice. Notably, these effects persisted for 12 months with no significant off-target effects, liver-induced toxicity, or substantial immune responses, highlighting the approach's safety and specificity. Furthermore, the developed humanized mouse model validated the efficacy of our therapeutic strategy. These findings support LNP-CRISPR-Cas9 targeting HAO1 as a promising and safer alternative for PH1 treatment with a single administration.
RESUMEN
Recombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene. This combinatorial approach achieved correction of ornithine transcarbamylase deficiency in the neonatal Spfash mouse model following a single delivery to dividing hepatocytes in the newborn liver. Correction remained stable into adulthood, while a conventional rAAV approach resulted in a return to the disease state. In non-human primates, integration by transposition, mediated by this technology, improved gene expression 10-fold over conventional rAAV-mediated gene transfer while requiring 5-fold less vector. Additionally, integration site analysis confirmed a random profile while specifically targeting TA dinucleotides across the genome. Together, these findings demonstrate that transposable elements can improve rAAV-delivered therapies by lowering the vector dose requirement and associated toxicity while expanding target cell types.
Asunto(s)
Dependovirus , Vectores Genéticos , Hepatocitos , Nanopartículas , ARN Mensajero , Transgenes , Transposasas , Animales , Dependovirus/genética , Ratones , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Hepatocitos/metabolismo , Transposasas/genética , Transposasas/metabolismo , Nanopartículas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Terapia Genética/métodos , Humanos , Expresión Génica , Lípidos/química , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , LiposomasRESUMEN
Lorises are a group of globally threatened strepsirrhine primates that exhibit many unusual physiological and behavioral features, including a low metabolic rate, slow movement, and hibernation. Here, we assembled a chromosome-level genome sequence of the pygmy loris (Xanthonycticebus pygmaeus) and resequenced whole genomes from 50 pygmy lorises and 6 Bengal slow lorises (Nycticebus bengalensis). We found that many gene families involved in detoxification have been specifically expanded in the pygmy loris, including the GSTA gene family, with many newly derived copies functioning specifically in the liver. We detected many genes displaying evolutionary convergence between pygmy loris and koala, including PITRM1. Significant decreases in PITRM1 enzymatic activity in these two species may have contributed to their characteristic low rate of metabolism. We also detected many evolutionarily convergent genes and positively selected genes in the pygmy loris that are involved in muscle development. Functional assays demonstrated the decreased ability of one positively selected gene, MYOF, to up-regulate the fast-type muscle fiber, consistent with the lower proportion of fast-twitch muscle fibers in the pygmy loris. The protein product of another positively selected gene in the pygmy loris, PER2, exhibited weaker binding to the key circadian core protein CRY, a finding that may be related to this species' unusual circadian rhythm. Finally, population genomics analysis revealed that these two extant loris species, which coexist in the same habitat, have exhibited an inverse relationship in terms of their demography over the past 1 million years, implying strong interspecies competition after speciation.
Asunto(s)
Adaptación Biológica , Evolución Biológica , Lorisidae , Adaptación Biológica/genética , Animales , Demografía , Hibernación , Lorisidae/genética , Metagenómica , Metaloendopeptidasas/genéticaRESUMEN
Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.
Asunto(s)
ADN Glicosilasas , Cardiomiopatías Diabéticas , Resistencia a la Insulina , Animales , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/deficiencia , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Ratones , Masculino , PPAR gamma/metabolismo , Glucosa/metabolismo , Miocardio/metabolismo , Miocardio/patología , Modelos Animales de Enfermedad , Glucólisis , Humanos , Ratones Endogámicos C57BLRESUMEN
Grain cadmium (Cd) is translocated from source to sink tissues exclusively via phloem, though the phloem Cd unloading transporter has not been identified yet. Here, we isolated and functionally characterized a defensin-like gene DEFENSIN 8 (DEF8) highly expressed in rice (Oryza sativa) grains and induced by Cd exposure in seedling roots. Histochemical analysis and subcellular localization detected DEF8 expression preferentially in pericycle cells and phloem of seedling roots, as well as in phloem of grain vasculatures. Further analysis demonstrated that DEF8 is secreted into extracellular spaces possibly by vesicle trafficking. DEF8 bound to Cd in vitro, and Cd efflux from protoplasts as well as loading into xylem vessels decreased in the def8 mutant seedlings compared with the wild type. At maturity, significantly less Cd accumulation was observed in the mutant grains. These results suggest that DEF8 is a dual function protein that facilitates Cd loading into xylem and unloading from phloem, thus mediating Cd translocation from roots to shoots and further allocation to grains, representing a phloem Cd unloading regulator. Moreover, essential mineral nutrient accumulation as well as important agronomic traits were not affected in the def8 mutants, suggesting DEF8 is an ideal target for breeding low grain Cd rice.
Asunto(s)
Cadmio , Oryza , Cadmio/metabolismo , Oryza/genética , Oryza/metabolismo , Floema/metabolismo , Fitomejoramiento , Grano Comestible/metabolismo , Plantones/metabolismo , Raíces de Plantas/metabolismo , Defensinas/genética , Defensinas/análisis , Defensinas/metabolismoRESUMEN
AIMS: To explore the associations between cuprotosis-related genes (CRGs) across different stages of liver disease in metabolic dysfunction-associated fatty liver disease (MAFLD), including hepatocellular carcinoma (HCC). MATERIALS AND METHODS: We analysed several bulk RNA sequencing datasets from patients with MAFLD (n = 331) and MAFLD-related HCC (n = 271) and two MAFLD single-cell RNA sequencing datasets. To investigate the associations between CRGs and MAFLD, we performed differential correlation, logistic regression and functional enrichment analyses. We also validated the findings in an independent Wenzhou PERSONS cohort of MAFLD patients (n = 656) used for a genome-wide association study (GWAS). RESULTS: GLS, GCSH and ATP7B genes showed significant differences across the MAFLD spectrum and were significantly associated with liver fibrosis stages. GLS was closely associated with fibrosis stages in patients with MAFLD and those with MAFLD-related HCC. GLS is predominantly expressed in monocytes and T cells in MAFLD. During the progression of metabolic dysfunction-associated fatty liver to metabolic-associated steatohepatitis, GLS expression in T cells decreased. GWAS revealed that multiple single nucleotide polymorphisms in GLS were associated with clinical indicators of MAFLD. CONCLUSIONS: GLS may contribute to liver inflammation and fibrosis in MAFLD mainly through cuprotosis and T-cell activation, promoting the progression of MAFLD to HCC. These findings suggest that cuprotosis may play a role in MAFLD progression, potentially providing new insights into MAFLD pathogenesis.
Asunto(s)
Carcinoma Hepatocelular , Estudio de Asociación del Genoma Completo , Neoplasias Hepáticas , Humanos , Femenino , Masculino , Carcinoma Hepatocelular/genética , Persona de Mediana Edad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Polimorfismo de Nucleótido Simple , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Adulto , Anciano , Progresión de la EnfermedadRESUMEN
A copper-catalyzed [3 + 2] annulation of O-acyl oximes with 2-electron-withdrawing group substituted p-hydroquinones for the efficient synthesis of polysubstituted 5-hydroxyindoles is developed. Further intramolecular cyclization leads to the concise and rapid construction of several kinds of 3,4- and 4,5-fused polycyclic indoles.
RESUMEN
Twenty-five acetophenone/piperazin-2-one (APPA) hybrids were designed and synthesized based on key pharmacophores found in anti-breast cancer drugs Neratinib, Palbociclib, and Olaparib. Compound 1j exhibited good in vitro antiproliferative activity (IC50 = 6.50 µM) and high selectivity (SI = 9.2 vs HER2-positive breast cancer cells SKBr3; SI = 7.3 vs normal breast cells MCF-10A) against triple negative breast cancer (TNBC) cells MDA-MB-468. In addition, 1j could selectively cause DNA damage, inducing the accumulation of γH2AX and P53 in MDA-MB-468 cells. It also reduced the phosphorylation level of P38 and the expression of HSP70, which further prevented the repair of DNA damage and caused cells S/G2-arrest leading to MDA-MB-468 cells death.
Asunto(s)
Acetofenonas , Antineoplásicos , Proliferación Celular , Daño del ADN , Ensayos de Selección de Medicamentos Antitumorales , Piperazinas , Neoplasias de la Mama Triple Negativas , Humanos , Daño del ADN/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Acetofenonas/farmacología , Acetofenonas/química , Acetofenonas/síntesis química , Línea Celular Tumoral , Piperazinas/farmacología , Piperazinas/química , Piperazinas/síntesis química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Descubrimiento de DrogasRESUMEN
BACKGROUND: Acute suppurative cholangitis (ASC) lacks sensitive and specific preoperative diagnostic criteria. Some researchers suggest treating ASC as severe cholangitis. This study aimed to explore the relationship between the Tokyo Guidelines 2018 (TG18) grading system for acute cholangitis (AC) and the diagnosis of acute suppurative cholangitis (ASC), searching for independent risk factors of ASC and develop a nomogram to discriminate ASC from acute nonsuppurative cholangitis (ANSC) accurately. METHODS: After applying the inclusion and exclusion criteria, 401 patients with acute cholangitis (AC) were retrospectively analyzed at Nanjing First Hospital between January 2015 and June 2023. SPSS version 27.0 and R studio software were used to analyze data obtained from medical records. The results were validated in a prospective cohort of 82 AC patients diagnosed at Nanjing First Hospital between July 2023 and February 2024. RESULTS: Among the 401 patients, 102 had suppurative bile (the ASC group; AC grade I: 40 [39.2%], AC grade II: 27 [26.5%], AC grade III: 35 [34.3%]), whereas 299 did not have (the ANSC group; AC grade I: 157 [52.5%], AC grade II: 92 [30.8%], AC grade III: 50 [16.7%]). The specificity of ASC for diagnosing moderate-to-severe cholangitis is 79.7%. Multivariate logistic regression analysis identified concurrent cholecystitis, CRP, PCT, TBA, and bile duct diameter as independent risk factors for suppurative bile, and all of these factors were included in the nomogram. The calibration curve exhibited consistency between the nomogram and the actual observation, and the area under the curve was 0.875 (95% confidence interval: 0.835-0.915), sensitivity was 86.6%, and specificity was 75.5%. CONCLUSION: Suppurative bile is a specific indicator for diagnosing moderate-to-severe cholangitis. However, diagnosing ASC with AC grade II and AC grade III has the risk of missed diagnosis as the sensitivity is only 60.8%. To improve the diagnostic rate of ASC, this study identified concurrent cholecystitis, CRP, PCT, TBA, and preoperative bile duct diameter as independent risk factors for ASC, and a nomogram was developed to help physicians recognize patients with ASC.
Asunto(s)
Colangitis , Nomogramas , Humanos , Colangitis/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Factores de Riesgo , Enfermedad Aguda , Anciano , Estudios Retrospectivos , Supuración , Estudios Prospectivos , Adulto , Índice de Severidad de la Enfermedad , Sensibilidad y Especificidad , Diagnóstico DiferencialRESUMEN
BACKGROUND: Descemet membrane endothelial keratoplasty (DMEK) has become the dominant keratoplasty procedure. However, the impact of high intraocular pressure (IOP) on the DMEK prognosis in patients without preexisting glaucoma remains unknown. METHODS: Non-glaucoma patients who underwent DMEK in Peking University Third Hospital between July 2017 and March 2023 with a follow-up duration longer than six months were included in this cohort study. Eyes were divided into three groups: Group A) normal IOP; Group B) early IOP elevation (IOP ≥ 30 mmHg or increase of more than 10 mmHg from baseline within 3 days); Group C) intermediate-term IOP elevation (IOP > 21 mmHg or increase of more than 10 mmHg from baseline after 14 days postoperatively). The postoperative IOP, endothelial cell density (ECD), central corneal thickness (CCT), best-corrected visual acuity (BCVA) and rate of graft failure were analysed. RESULTS: Forty-seven eyes from forty-seven patients were included. Thirty-seven eyes were bullous keratopathy, and ten were Fuchs endothelial corneal dystrophy. Twenty-five eyes were classified as Group A, six as Group B and sixteen as Group C. The mean peak IOP was 49.00 ± 4.99 mmHg in Group B eyes and 31.89 ± 11.75 mmHg in Group C eyes. The postoperative BCVA significantly differed from that before surgery (P < 0.001). The ECD at 3 months after surgery in eyes with intermediate-term IOP elevation was lower (P = 0.032). Four eyes with intermediate-term IOP elevation developed graft failure (P = 0.001). CONCLUSIONS: Intermediate-term IOP elevation after DMEK may reduce the graft ECD and lead to graft failure within six months after surgery. However, early IOP elevation had no effect on the prognosis. Careful IOP monitoring and intermediate-term IOP management should be conducted for graft protection.
Asunto(s)
Queratoplastia Endotelial de la Lámina Limitante Posterior , Endotelio Corneal , Glaucoma , Presión Intraocular , Agudeza Visual , Humanos , Queratoplastia Endotelial de la Lámina Limitante Posterior/métodos , Femenino , Masculino , Presión Intraocular/fisiología , Anciano , Persona de Mediana Edad , Agudeza Visual/fisiología , Endotelio Corneal/patología , Glaucoma/cirugía , Glaucoma/fisiopatología , Estudios Retrospectivos , Complicaciones Posoperatorias , Anciano de 80 o más Años , Estudios de Seguimiento , Supervivencia de Injerto/fisiología , Recuento de Células , Hipertensión Ocular/fisiopatología , Periodo Posoperatorio , Adulto , Enfermedades de la Córnea/cirugía , Enfermedades de la Córnea/fisiopatología , Pérdida de Celulas Endoteliales de la Córnea/diagnóstico , Pérdida de Celulas Endoteliales de la Córnea/fisiopatologíaRESUMEN
Ectropis grisescens (Lepidoptera: Geometridae) is a destructive tea pest in China. Mimesis, characterized by changing body color, is an important trait of E. grisescens larvae. Hence, identifying melanin pathway-related genes may contribute to developing new pest control strategies. In the present study, we cloned Egebony, a gene potentially involved in melanin pigmentation in E. grisescens, and subsequently conducted CRISPR/Cas9-mediated targeted mutagenesis of Egebony to analyze its role in pigmentation and development. At the larvae, prepupae, and pupae stages, Egebony-knockout individuals exhibited darker pigmentation than the wild-type. However, Egebony knockout did not impact the colors of sclerotized appendants, including ocelli, setae, and claws. While mutant pupae could successfully develop into moths, they were unable to emerge from the puparium. Notably, embryo hatchability and larval survival of mutants remained normal. Further investigation indicated that mutant pupae exhibited significantly stronger shearing force than the wild-type, with the pigmented layer of mutant pupae appearing darker and thicker. Collectively, these results suggest that the loss of Egebony might increase the rigidity of the puparium and prevent moth eclosion. This study provides new insights into understanding the function and diversification of ebony in insect development and identifies a lethal gene that can be manipulated for developing effective pest control strategies.
Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Melaninas/genética , Sistemas CRISPR-Cas , Larva/genética , Pigmentación/genéticaRESUMEN
Polygonati rhizoma (Huangjing in Chinese) is a common clinical tonic with the traditional effects of tonifying Qi, nourishing Yin. However, the lack of precise control of processing parameters has led to the uneven quality of processed Huangjing. A prediction model using the CRITIC method optimizes processing by correlating method, component contents, and biological activity, ensuring consistent quality and efficacy.
RESUMEN
Heat stress (HS) has become a common stressor, owing to the increasing frequency of extreme high-temperature weather triggered by global warming, which has seriously affected the reproductive capacity of important livestock such as sheep. However, little is known about whether HS reduces sperm motility by inducing circadian rhythm disorders in rumen microorganisms and metabolites in sheep. In this study, the year-round reproduction of two-year-old Hu rams was selected, and the samples were collected in May and July 2022 at average environmental temperatures between 18.71 °C and 33.58 °C, respectively. The experiment revealed that the mean temperature-humidity index was 86.34 in July, indicating that Hu rams suffered from HS. Our research revealed that HS significantly decreased sperm motility in Hu rams. Microbiome analysis further revealed that HS reshaped the composition and circadian rhythm of rumen microorganisms, leading to the circadian disruption of microorganisms that drive cortisol and testosterone synthesis. Serum indicators further confirmed that HS significantly increased the concentrations of cortisol during the daytime and decreased the testosterone concentration at the highest body temperature. Untargeted metabolomics analysis revealed that the circadian rhythm of rumen fluid metabolites in the HS group was enriched by the cortisol and steroid synthesis pathways. Moreover, HS downregulated metabolites, such as kaempferol and L-tryptophan in rumen fluid and seminal plasma, which are associated with promotion of spermatogenesis and sperm motility; furthermore, these metabolites were found to be strongly positively correlated with Veillonellaceae_UCG_001. Overall, this study revealed the relationship between the HS-induced circadian rhythm disruption of rumen microorganisms and metabolites and sperm motility decline. Our findings provide a new perspective for further interventions in enhancing sheep sperm motility with regard to the circadian time scale.
Asunto(s)
Ritmo Circadiano , Rumen , Motilidad Espermática , Animales , Masculino , Rumen/microbiología , Rumen/metabolismo , Ritmo Circadiano/fisiología , Ovinos , Respuesta al Choque Térmico/fisiología , Microbioma Gastrointestinal , Hidrocortisona/metabolismo , Hidrocortisona/sangreRESUMEN
BACKGROUND: The clinical efficacy and safety of intravenous immunoglobulin (IVIg) treatment for COVID-19 remain controversial. This study aimed to map the current status and gaps of available evidence, and conduct a meta-analysis to further investigate the benefit of IVIg in COVID-19 patients. METHODS: Electronic databases were searched for systematic reviews/meta-analyses (SR/MAs), primary studies with control groups, reporting on the use of IVIg in patients with COVID-19. A random-effects meta-analysis with subgroup analyses regarding study design and patient disease severity was performed. Our outcomes of interest determined by the evidence mapping, were mortality, length of hospitalization (days), length of intensive care unit (ICU) stay (days), number of patients requiring mechanical ventilation, and adverse events. RESULTS: We included 34 studies (12 SR/MAs, 8 prospective and 14 retrospective studies). A total of 5571 hospitalized patients were involved in 22 primary studies. Random-effects meta-analyses of very low to moderate evidence showed that there was little or no difference between IVIg and standard care or placebo in reducing mortality (relative risk [RR] 0.91; 95% CI 0.78-1.06; risk difference [RD] 3.3% fewer), length of hospital (mean difference [MD] 0.37; 95% CI - 2.56, 3.31) and ICU (MD 0.36; 95% CI - 0.81, 1.53) stays, mechanical ventilation use (RR 0.92; 95% CI 0.68-1.24; RD 2.8% fewer), and adverse events (RR 0.98; 95% CI 0.84-1.14; RD 0.5% fewer) of patients with COVID-19. Sensitivity analysis using a fixed-effects model indicated that IVIg may reduce mortality (RR 0.76; 95% CI 0.60-0.97), and increase length of hospital stay (MD 0.68; 95% CI 0.09-1.28). CONCLUSION: Very low to moderate certainty of evidence indicated IVIg may not improve the clinical outcomes of hospitalized patients with COVID-19. Given the discrepancy between the random- and fixed-effects model results, further large-scale and well-designed RCTs are warranted.
Asunto(s)
COVID-19 , Inmunoglobulinas Intravenosas , Humanos , Inmunoglobulinas Intravenosas/efectos adversos , Estudios Prospectivos , Estudios Retrospectivos , Revisiones Sistemáticas como AsuntoRESUMEN
Traditional H2O2 cleavage mediated by macroscopic electron transfer (MET) not only has low utilization of H2O2, but also sacrifices the stability of catalysts. We present a non-redox hydroxyl-enriched spinel (CuFe2O4) catalyst with dual Lewis acid sites to realize the homolytic cleavage of H2O2. The results of systematic experiments, in situ characterizations, and theoretical calculations confirm that tetrahedral Cu sites with optimal Lewis acidity and strong electron delocalization can synergistically elongate the O-O bonds (1.47â Å â 1.87â Å) in collaboration with adjacent bridging hydroxyl (another Lewis acid site). As a result, the free energy of H2O2 homolytic cleavage is decreased (1.28â eV â 0.98â eV). H2O2 can be efficiently split into â OH induced by hydroxyl-enriched CuFe2O4 without MET, which greatly improves the catalyst stability and the H2O2 utilization (65.2 %, nearly 2 times than traditional catalysts). The system assembled with hydroxyl-enriched CuFe2O4 and H2O2 affords exceptional performance for organic pollutant elimination. The scale-up experiment using a continuous flow reactor realizes long-term stability (up to 600â mL), confirming the tremendous potential of hydroxyl-enriched CuFe2O4 for practical applications.
RESUMEN
OBJECTIVES: To explore the risk factors associated with cow's milk protein allergy (CMPA) in infants. METHODS: This study was a multicenter prospective nested case-control study conducted in seven medical centers in Beijing, China. Infants aged 0-12 months were included, with 200 cases of CMPA infants and 799 control infants without CMPA. Univariate and multivariate logistic regression analyses were used to investigate the risk factors for the occurrence of CMPA. RESULTS: Univariate logistic regression analysis showed that preterm birth, low birth weight, birth from the first pregnancy, firstborn, spring birth, summer birth, mixed/artificial feeding, and parental history of allergic diseases were associated with an increased risk of CMPA in infants (P<0.05). Multivariate logistic regression analysis revealed that firstborn (OR=1.89, 95%CI: 1.14-3.13), spring birth (OR=3.42, 95%CI: 1.70-6.58), summer birth (OR=2.29, 95%CI: 1.22-4.27), mixed/artificial feeding (OR=1.57, 95%CI: 1.10-2.26), parental history of allergies (OR=2.13, 95%CI: 1.51-3.02), and both parents having allergies (OR=3.15, 95%CI: 1.78-5.56) were risk factors for CMPA in infants (P<0.05). CONCLUSIONS: Firstborn, spring birth, summer birth, mixed/artificial feeding, and a family history of allergies are associated with an increased risk of CMPA in infants.
Asunto(s)
Hipersensibilidad a la Leche , Nacimiento Prematuro , Lactante , Embarazo , Femenino , Animales , Bovinos , Recién Nacido , Humanos , Hipersensibilidad a la Leche/etiología , Estudios de Casos y Controles , Estudios Prospectivos , Nacimiento Prematuro/inducido químicamente , Factores de Riesgo , Proteínas de la LecheRESUMEN
Ferroptosis contributes to the pathogenesis of atrial fibrillation (AF), although the mechanisms are still largely uncovered. The current study was designed to explore the pharmacological effects of icariin against ethanol-induced atrial remodeling, if any, and the mechanisms involved with a focus on SIRT1 signaling. Excessive ethanol-treated animals were administered with Ferrostatin-1, Erastin or icariin to evaluate the potential effects of icariin or ferroptosis. Then, the underling mechanisms was further explored in the in vitro experiments using HL-1 atrial myocytes. Excessive ethanol administration caused significant atrial damage as evidenced by increased susceptibility to AF, altered atrial conduction pattern, atrial enlargement, and enhanced fibrotic markers. These detrimental effects were reversed by Ferrostatin-1 or icariin treatment, while Erastin co-administration markedly abolished the beneficial actions conferred by icariin. Mechanistically, ethanol-treated atria exhibited markedly up-regulated pro-ferroptotic protein (PTGS2, ACSL4, P53) and suppressed anti-ferroptotic molecules (GPX4, FTH1). Icariin treatment inhibited ethanol-induced atrial ferroptosis by reducing atrial mitochondrial damage, ROS accumulation and iron overload. Interestingly, the in vivo and in vitro data showed that icariin activated atrial SIRT1-Nrf-2-HO-1 signaling pathway, while EX527 not only reversed these effects, but also abolished the therapeutic effects of icariin. Moreover, the stimulatory effects on GPX4, SLC7A11 and the suppressive effects on ACSL4, P53 conferred by icariin were blunted by EX527 treatment. These data demonstrate that ferroptosis plays a causative role in the pathogenesis of ethanol-induced atrial remodeling and susceptibility to AF. Icariin protects against atrial damage by inhibiting ferroptosis via SIRT1 signaling. Its role as a prophylactic/therapeutic drug deserves further clinical study.
Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Ferroptosis , Animales , Fibrilación Atrial/inducido químicamente , Fibrilación Atrial/tratamiento farmacológico , Apoptosis , Sirtuina 1/genética , Proteína p53 Supresora de Tumor , Etanol/toxicidadRESUMEN
Nitrate allocation in Arabidopsis (Arabidopsis thaliana) represents an important mechanism for mediating plant environmental adaptation. However, whether this mechanism occurs or has any physiological/agronomic importance in the ammoniphilic plant rice (Oriza sativa L.) remains unknown. Here, we address this question through functional characterization of the Nitrate transporter 1/Peptide transporter Family (NPF) transporter gene OsNPF7.9. Ectopic expression of OsNPF7.9 in Xenopus oocytes revealed that the gene encodes a low-affinity nitrate transporter. Histochemical and in-situ hybridization assays showed that OsNPF7.9 expresses preferentially in xylem parenchyma cells of vasculature tissues. Transient expression assays indicated that OsNPF7.9 localizes to the plasma membrane. Nitrate allocation from roots to shoots was essentially decreased in osnpf7.9 mutants. Biomass, grain yield, and nitrogen use efficiency (NUE) decreased in the mutant dependent on nitrate availability. Further analysis demonstrated that nitrate allocation mediated by OsNPF7.9 is essential for balancing rice growth and stress tolerance. Moreover, our research identified an indica-japonica divergent single-nucleotide polymorphism occurring in the coding region of OsNPF7.9, which correlates with enhanced nitrate allocation to shoots of indica rice, revealing that divergent nitrate allocation might represent an important component contributing to the divergent NUE between indica and japonica subspecies and was likely selected as a favorable trait during rice breeding.