RESUMEN
Persistence of residual disease after induction chemotherapy is a strong predictor of relapse in acute lymphoblastic leukemia (ALL). The bone marrow microenvironment may support escape from treatment. Using three-dimensional fluorescence imaging of ten primary ALL xenografts we identified sites of predilection in the bone marrow for resistance to induction with dexamethasone, vincristine and doxorubicin. We detected B-cell precursor ALL cells predominantly in the perisinusoidal space at early engraftment and after chemotherapy. The spatial distribution of T-ALL cells was more widespread with contacts to endosteum, nestin+ pericytes and sinusoids. Dispersion of T-ALL cells in the bone marrow increased under chemotherapeutic pressure. A subset of slowly dividing ALL cells was transiently detected upon shortterm chemotherapy, but not at residual disease after chemotherapy, challenging the notion that ALL cells escape treatment by direct induction of a dormant state in the niche. These lineage-dependent differences point to niche interactions that may be more specifically exploitable to improve treatment.
Asunto(s)
Linfoma de Burkitt , Leucemia Bifenotípica Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Médula Ósea , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Linfoma de Burkitt/tratamiento farmacológico , Microambiente TumoralRESUMEN
The Gram-negative bacterium Legionella pneumophila is the causative agent of Legionnaires' disease and replicates in amoebae and macrophages within a distinct compartment, the Legionella-containing vacuole (LCV). The facultative intracellular pathogen switches between a replicative, non-virulent and a non-replicating, virulent/transmissive phase. Here, we show on a single-cell level that at late stages of infection, individual motile (PflaA -GFP-positive) and virulent (PralF - and PsidC -GFP-positive) L. pneumophila emerge in the cluster of non-growing bacteria within an LCV. Comparative proteomics of PflaA -GFP-positive and PflaA -GFP-negative L. pneumophila subpopulations reveals distinct proteomes with flagellar proteins or cell division proteins being preferentially produced by the former or the latter, respectively. Toward the end of an infection cycle (Ë 48 h), the PflaA -GFP-positive L. pneumophila subpopulation emerges at the cluster periphery, predominantly escapes the LCV, and spreads from the bursting host cell. These processes are mediated by the Legionella quorum sensing (Lqs) system. Thus, quorum sensing regulates the emergence of a subpopulation of transmissive L. pneumophila at the LCV periphery, and phenotypic heterogeneity underlies the intravacuolar bi-phasic life cycle of L. pneumophila.
Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Proteínas Bacterianas/genética , Humanos , Legionella/genética , Legionella pneumophila/genética , Percepción de Quorum , VacuolasRESUMEN
Light-sheet microscopy is an ideal technique for imaging large cleared samples; however, the community is still lacking instruments capable of producing volumetric images of centimeter-sized cleared samples with near-isotropic resolution within minutes. Here, we introduce the mesoscale selective plane-illumination microscopy initiative, an open-hardware project for building and operating a light-sheet microscope that addresses these challenges and is compatible with any type of cleared or expanded sample ( www.mesospim.org ).
Asunto(s)
Microscopía Fluorescente/instrumentación , Animales , Embrión de Pollo , Microscopía Fluorescente/métodos , Programas InformáticosRESUMEN
Near-infrared light (NIR; 650-900â nm) offers unparalleled advantages as a biocompatible stimulus. The development of photocages that operate in this region represents a fundamental challenge due to the low energy of the excitation light. Herein, we repurpose cyanine dyes into photocages that are available on a multigram scale in three steps and efficiently release carboxylic acids in aqueous media upon irradiation with NIR light up to 820â nm. The photouncaging process is examined using several techniques, providing evidence that it proceeds via photooxidative pathway. We demonstrate the practical utility in live HeLa cells by delivery and release of the carboxylic acid cargo, that was otherwise not uptaken by cells in its free form. In combination with modularity of the cyanine scaffold, the realization of these accessible photocages will fully unleash the potential of the emerging field of NIR-photoactivation and facilitate its widespread adoption outside the photochemistry community.
Asunto(s)
Colorantes , Quinolinas , Ácidos Carboxílicos , Colorantes Fluorescentes , Células HeLa , Humanos , Rayos Infrarrojos , FotoquímicaRESUMEN
Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming ciliary-directed vesicles, through organization of the vesicle fusion machinery at the periciliary membrane.
Asunto(s)
Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico , Movimiento Celular , Cilios/genética , Cilios/metabolismo , Humanos , Membranas/metabolismo , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Transporte de Proteínas , Pez Cebra , Proteínas de Unión al GTP rab/genéticaRESUMEN
The pathogenic bacterium Legionella pneumophila replicates in host cells within a distinct ER-associated compartment termed the Legionella-containing vacuole (LCV). How the dynamic ER network contributes to pathogen proliferation within the nascent LCV remains elusive. A proteomic analysis of purified LCVs identified the ER tubule-resident large GTPase atlastin3 (Atl3, yeast Sey1p) and the reticulon protein Rtn4 as conserved LCV host components. Here, we report that Sey1/Atl3 and Rtn4 localize to early LCVs and are critical for pathogen vacuole formation. Sey1 overproduction promotes intracellular growth of L. pneumophila, whereas a catalytically inactive, dominant-negative GTPase mutant protein, or Atl3 depletion, restricts pathogen replication and impairs LCV maturation. Sey1 is not required for initial recruitment of ER to PtdIns(4)P-positive LCVs but for subsequent pathogen vacuole expansion. GTP (but not GDP) catalyzes the Sey1-dependent aggregation of purified, ER-positive LCVs in vitro Thus, Sey1/Atl3-dependent ER remodeling contributes to LCV maturation and intracellular replication of L. pneumophila.
Asunto(s)
Retículo Endoplásmico/fisiología , Proteínas de Unión al GTP/metabolismo , Legionella pneumophila/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Vacuolas/metabolismo , Vacuolas/microbiología , Células A549 , Dictyostelium/microbiología , Retículo Endoplásmico/microbiología , Proteínas de Unión al GTP/genética , Humanos , Legionella pneumophila/patogenicidad , Macrófagos/microbiología , Proteínas de la Membrana/genética , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Proteómica , Sistemas de Secreción Tipo IVRESUMEN
BACKGROUND: The kidney proximal convoluted tubule (PCT) reabsorbs filtered macromolecules via receptor-mediated endocytosis (RME) or nonspecific fluid phase endocytosis (FPE); endocytosis is also an entry route for disease-causing toxins. PCT cells express the protein ligand receptor megalin and have a highly developed endolysosomal system (ELS). Two PCT segments (S1 and S2) display subtle differences in cellular ultrastructure; whether these translate into differences in endocytotic function has been unknown. METHODS: To investigate potential differences in endocytic function in S1 and S2, we quantified ELS protein expression in mouse kidney PCTs using real-time quantitative polymerase chain reaction and immunostaining. We also used multiphoton microscopy to visualize uptake of fluorescently labeled ligands in both living animals and tissue cleared using a modified CLARITY approach. RESULTS: Uptake of proteins by RME occurs almost exclusively in S1. In contrast, dextran uptake by FPE takes place in both S1 and S2, suggesting that RME and FPE are discrete processes. Expression of key ELS proteins, but not megalin, showed a bimodal distribution; levels were far higher in S1, where intracellular distribution was also more polarized. Tissue clearing permitted imaging of ligand uptake at single-organelle resolution in large sections of kidney cortex. Analysis of segmented tubules confirmed that, compared with protein uptake, dextran uptake occurred over a much greater length of the PCT, although individual PCTs show marked heterogeneity in solute uptake length and three-dimensional morphology. CONCLUSIONS: Striking axial differences in ligand uptake and ELS function exist along the PCT, independent of megalin expression. These differences have important implications for understanding topographic patterns of kidney diseases and the origins of proteinuria.
Asunto(s)
Endocitosis/fisiología , Túbulos Renales Proximales/anatomía & histología , Túbulos Renales Proximales/fisiología , Animales , Endosomas/metabolismo , Microscopía Intravital , Túbulos Renales Proximales/diagnóstico por imagen , Ligandos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Muramidasa/metabolismo , Transporte de ProteínasRESUMEN
Podocyte dysfunction impairs the size selectivity of the glomerular filter, leading to proteinuria, hypoalbuminuria, and edema, clinically defined as nephrotic syndrome. Hereditary forms of nephrotic syndrome are linked to mutations in podocyte-specific genes. To identify genes contributing to podocyte dysfunction in acquired nephrotic syndrome, we studied human glomerular gene expression data sets for glomerular-enriched gene transcripts differentially regulated between pretransplant biopsy samples and biopsies from patients with nephrotic syndrome. Candidate genes were screened by in situ hybridization for expression in the zebrafish pronephros, an easy-to-use in vivo assay system to assess podocyte function. One glomerulus-enriched product was the Rho-GTPase binding protein, IQGAP2. Immunohistochemistry found a strong presence of IQGAP2 in normal human and zebrafish podocytes. In zebrafish larvae, morpholino-based knockdown of iqgap2 caused a mild foot process effacement of zebrafish podocytes and a cystic dilation of the urinary space of Bowman's capsule upon onset of urinary filtration. Moreover, the glomerulus of zebrafish morphants showed a glomerular permeability for injected high-molecular-weight dextrans, indicating an impaired size selectivity of the glomerular filter. Thus, IQGAP2 is a Rho-GTPase binding protein, highly abundant in human and zebrafish podocytes, which controls normal podocyte structure and function as evidenced in the zebrafish pronephros.
Asunto(s)
Proteínas Activadoras de GTPasa/genética , Síndrome Nefrótico/genética , Síndrome Nefrótico/fisiopatología , Podocitos/fisiología , Pronefro/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Cápsula Glomerular/patología , Proteínas Activadoras de GTPasa/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Hibridación in Situ , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Glomérulos Renales/fisiopatología , Podocitos/metabolismo , Podocitos/patología , Pronefro/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismoRESUMEN
Novel photoactive (metallo)porphyrins were synthesised and characterised. When irradiated with light at a wavelength greater than 600â nm, these porphyrins act as photosensitisers and show high cytotoxicity towards two different human cancer cell lines with IC50 values down to 0.4â µM. A paramagnetic copper(II) porphyrin is the first photosensitiser to display excellent phototoxicity, explained by the electron paramagnetic resonance (EPR) spin trapping of hydroxy radicals and experimentally confirmed by the discovery of elevated levels of reactive oxygen species (ROS) inside A2780 cells after irradiation with red light. This finding indicates that paramagnetic compounds should be considered for photodynamic therapy (PDT). Furthermore, an additive effect of cisplatin and a zinc porphyrin, both at subtherapeutic concentrations of 0.22â µM, was observed.
Asunto(s)
Antineoplásicos/química , Fármacos Fotosensibilizantes/química , Porfirinas/química , Antineoplásicos/uso terapéutico , Antineoplásicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/química , Cisplatino/uso terapéutico , Cisplatino/toxicidad , Complejos de Coordinación/química , Complejos de Coordinación/uso terapéutico , Complejos de Coordinación/toxicidad , Cobre/química , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Luz , Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/toxicidad , Porfirinas/toxicidad , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents. More than 30% of patients develop lung metastasis, which is the leading cause of mortality. Recently, the extracellular matrix protein Cyr61 has been recognized as a malignancy promoting protein in OS mouse model with prognostic potential in human OS. In this study, we aimed at the identification of novel Cyr61-interacting proteins. Here we report that Cyr61 associates with Caprin-1, and confocal microscopy showed that stable ectopic expression of Caprin-1 leads to the formation of stress granules containing Caprin-1 and Cyr61, confers resistance to cisplatin-induced apoptosis, and resulted in constitutive phosphorylation of Akt and ERK1/2. Importantly, ectopic expression of Caprin-1 dramatically enhanced primary tumor growth, remarkably increased lung metastatic load in a SCID intratibial OS mouse model, and decreased significantly (p<0.0018) the survival of the mice. Although Caprin-1 expression, evaluated with a tissue microarray including samples from 59 OS patients, failed to be an independent predictor for the patients' outcome in this limited cohort of patients, increased Caprin-1 expression indicated a tendency to shortened overall survival, and more strikingly, Cyr61/Caprin-1 co-expression was associated with worse survival than that observed for patients with tumors expressing either Cyr61 or Caprin-1 alone or none of these proteins. The findings imply that Caprin-1 may have a metastasis promoting role in OS and show that through resistance to apoptosis and via the activation of Akt and ERK1/2 pathways, Caprin-1 is significantly involved in the development of OS metastasis.
Asunto(s)
Neoplasias Óseas/patología , Proteínas de Ciclo Celular/metabolismo , Proteína 61 Rica en Cisteína/metabolismo , Neoplasias Pulmonares/secundario , Osteosarcoma/patología , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Cisplatino/farmacología , Proteína 61 Rica en Cisteína/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones SCID , Datos de Secuencia Molecular , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Fosforilación/genética , Pronóstico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trasplante HeterólogoRESUMEN
The epithelial cells lining the thick ascending limb (TAL) of the loop of Henle perform essential transport processes and secrete uromodulin, the most abundant protein in normal urine. The lack of differentiated cell culture systems has hampered studies of TAL functions. Here, we report a method to generate differentiated primary cultures of TAL cells, developed from microdissected tubules obtained in mouse kidneys. The TAL tubules cultured on permeable filters formed polarized confluent monolayers in â¼12 days. The TAL cells remain differentiated and express functional markers such as uromodulin, NKCC2, and ROMK at the apical membrane. Electrophysiological measurements on primary TAL monolayers showed a lumen-positive transepithelial potential (+9.4 ± 0.8 mV/cm(2)) and transepithelial resistance similar to that recorded in vivo. The transepithelial potential is abolished by apical bumetanide and in primary cultures obtained from ROMK knockout mice. The processing, maturation and apical secretion of uromodulin by primary TAL cells is identical to that observed in vivo. The primary TAL cells respond appropriately to hypoxia, hypertonicity, and stimulation by desmopressin, and they can be transfected. The establishment of this primary culture system will allow the investigation of TAL cells obtained from genetically modified mouse models, providing a critical tool for understanding the role of that segment in health and disease.
Asunto(s)
Células Cultivadas , Asa de la Nefrona/citología , Uromodulina/biosíntesis , Animales , Ratones , Ratones Noqueados , Canales de Potasio de Rectificación Interna/biosíntesis , Miembro 1 de la Familia de Transportadores de Soluto 12/biosíntesisRESUMEN
In 2015, we launched the mesoSPIM initiative, an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of such microscopes. Here, we introduce the next-generation mesoSPIM ("Benchtop") with a significantly increased field of view, improved resolution, higher throughput, more affordable cost, and simpler assembly compared to the original version. We develop an optical method for testing detection objectives that enables us to select objectives optimal for light-sheet imaging with large-sensor cameras. The improved mesoSPIM achieves high spatial resolution (1.5 µm laterally, 3.3 µm axially) across the entire field of view, magnification up to 20×, and supports sample sizes ranging from sub-mm up to several centimeters while being compatible with multiple clearing techniques. The microscope serves a broad range of applications in neuroscience, developmental biology, pathology, and even physics.
Asunto(s)
Microscopía , Neurociencias , Microscopía/métodosRESUMEN
A dietary potassium load induces a rapid kaliuresis and natriuresis, which may occur even before plasma potassium and aldosterone (aldo) levels increase. Here we sought to gain insight into underlying molecular mechanisms contributing to this response. After gastric gavage of 2% potassium, the plasma potassium concentrations rose rapidly (0.25 h), followed by a significant rise of plasma aldo (0.5 h) in mice. Enhanced urinary potassium and sodium excretion was detectable as early as spot urines could be collected (about 0.5 h). The functional changes were accompanied by a rapid and sustained (0.25-6 h) dephosphorylation of the NaCl cotransporter (NCC) and a late (6 h) upregulation of proteolytically activated epithelial sodium channels. The rapid effects on NCC were independent from the coadministered anion. NCC dephosphorylation was also aldo-independent, as indicated by experiments in aldo-deficient mice. The observed urinary sodium loss relates to NCC, as it was markedly diminished in NCC-deficient mice. Thus, downregulation of NCC likely explains the natriuretic effect of an acute oral potassium load in mice. This may improve renal potassium excretion by increasing the amount of intraluminal sodium that can be exchanged against potassium in the aldo-sensitive distal nephron.
Asunto(s)
Riñón/metabolismo , Potasio en la Dieta/sangre , Receptores de Droga/metabolismo , Simportadores/metabolismo , Administración Oral , Aldosterona/sangre , Animales , Transporte Biológico , Citocromo P-450 CYP11B2/deficiencia , Citocromo P-450 CYP11B2/genética , Canales Epiteliales de Sodio/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Natriuresis , Fosforilación , Potasio en la Dieta/administración & dosificación , Potasio en la Dieta/orina , Receptores de Droga/deficiencia , Receptores de Droga/genética , Miembro 3 de la Familia de Transportadores de Soluto 12 , Simportadores/deficiencia , Simportadores/genética , Factores de Tiempo , Equilibrio HidroelectrolíticoRESUMEN
Hemotrophic mycoplasmas (HM) are highly specialized red blood cell parasites that cause infectious anemia in a variety of mammals, including humans. To date, no in vitro cultivation systems for HM have been available, resulting in relatively little information about the pathogenesis of HM infection. In pigs, Mycoplasma suis-induced infectious anemia is associated with hemorrhagic diathesis, and coagulation dysfunction. However, intravasal coagulation and subsequent consumption coagulopathy can only partly explain the sequence of events leading to hemorrhagic diathesis manifesting as cyanosis, petechial bleeding, and ecchymosis, and to disseminated coagulation. The involvement of endothelial activation and damage in M. suis-associated pathogenesis was investigated using light and electron microscopy, immunohistochemistry, and cell sorting. M. suis interacted directly with endothelial cells in vitro and in vivo. Endothelial activation, widespread endothelial damage, and adherence of red blood cells to the endothelium were evident in M. suis-infected pigs. These alterations of the endothelium were accompanied by hemorrhage, intravascular coagulation, vascular occlusion, and massive morphological changes within the parenchyma. M. suis biofilm-like microcolonies formed on the surface of endothelial cells, and may represent a putative persistence mechanism of M. suis. In vitro analysis demonstrated that M. suis interacted with the endothelial cytoskeletal protein actin, and induced actin condensation and activation of endothelial cells, as determined by the up-regulation of ICAM, PECAM, E-selectin, and P-selectin. These findings demonstrate an additional cell tropism of HM for endothelial cells and suggest that M. suis interferes with the protective function of the endothelium, resulting in hemorrhagic diathesis.
Asunto(s)
Aorta/patología , Células Endoteliales/patología , Eritrocitos/patología , Infecciones por Mycoplasma/veterinaria , Mycoplasma/patogenicidad , Enfermedades de los Porcinos/sangre , Animales , Aorta/microbiología , Células Endoteliales/microbiología , Eritrocitos/microbiología , Microscopía Electrónica de Rastreo/veterinaria , Microscopía Electrónica de Transmisión/veterinaria , Mycoplasma/fisiología , Infecciones por Mycoplasma/sangre , Infecciones por Mycoplasma/microbiología , Sus scrofa , Porcinos , Enfermedades de los Porcinos/microbiología , Tropismo , VirulenciaRESUMEN
BACKGROUND: Modern high volume-low pressure (HVLP) endotracheal tubes (ETT) cuffs can seal the trachea using baseline cuff pressures (CP) lower than peak inspiratory airway pressures (PIP). The aim of the study was to determine whether this technique reduces the damage to the tracheal mucosa compared to constant CP of 20 cmH(2)O. METHODS: Eighteen piglets were intubated with an ID 4.0 mm HVLP cuffed ETT (Microcuff PET) and artificially ventilated with 20 cmH(2)O PIP and 5 cmH(2)O PEEP. Animals were randomly allocated to two groups of CP: group A (just seal; n = 9) and group B (20 cmH(2)O; n = 9), controlled constantly with a manometer during the following 4-h study period under sevoflurane anesthesia. After euthanasia, cuff position was marked in situ. Damage in the cuff region was evaluated with scanning electron microscopy (SEM) examination by grading of mucosal damage and by estimating percentage of intact mucosal area both by a blinded observer. RESULTS: Maximal CP to seal the trachea in group A ranged from 12 to 18 cmH(2)O (median: 14 cmH(2)O). Using a mixed effects model approach, the estimated mean effect of group B vs group A was an increase of 17.9% (SE 8.1%) higher proportion of pictures with an area of at least 5% intact mucosa (P = 0.042). CONCLUSION: Minimal sealing pressures with cyclic pressure changes from CP did not result in decreased damage to the tracheal mucosa compared to constant CP of 20 cmH(2)O in this short-term animal trial.
Asunto(s)
Intubación Intratraqueal/efectos adversos , Membrana Mucosa/lesiones , Membrana Mucosa/patología , Tráquea/lesiones , Tráquea/patología , Presión del Aire , Anestesia por Inhalación , Anestésicos por Inhalación , Animales , Animales Recién Nacidos , Cilios/patología , Cilios/ultraestructura , Modelos Lineales , Manometría , Éteres Metílicos , Microscopía Electrónica de Rastreo , Respiración Artificial , Sevoflurano , PorcinosRESUMEN
Vision is one of our dominant senses and its loss has a profound impact on the life quality of affected individuals. Highly specialized neurons in the retina called photoreceptors convert photons into neuronal responses. This conversion of photons is mediated by light sensitive opsin proteins, which are found in the outer segments of the photoreceptors. These outer segments are highly specialized primary cilia, explaining why retinal dystrophy is a key feature of ciliopathies, a group of diseases resulting from abnormal and dysfunctional cilia. Therefore, research on ciliopathies often includes the analysis of the retina with special focus on the photoreceptor and its outer segment. In the last decade, the zebrafish has emerged as an excellent model organism to study human diseases, in particular with respect to the retina. The cone-rich retina of zebrafish resembles the fovea of the human macula and thus represents an excellent model to study human retinal diseases. Here we give detailed guidance on how to analyze the morphological and ultra-structural integrity of photoreceptors in the zebrafish using various histological and imaging techniques. We further describe how to conduct functional analysis of the retina by electroretinography and how to prepare isolated outer segment fractions for different -omic approaches. These different methods allow a comprehensive analysis of photoreceptors, helping to enhance our understanding of the molecular and structural basis of ciliary function in health and of the consequences of its dysfunction in disease.
Asunto(s)
Ciliopatías , Pez Cebra , Animales , Humanos , Pez Cebra/metabolismo , Cilios/metabolismo , Retina , Proteínas de Pez Cebra/metabolismo , Ciliopatías/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismoRESUMEN
In 2015, we launched the mesoSPIM initiative (www.mesospim.org), an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of light-sheet microscopy. Here, we introduce the next-generation mesoSPIM ("Benchtop") with significantly increased field of view, improved resolution, higher throughput, more affordable cost and simpler assembly compared to the original version. We developed a new method for testing objectives, enabling us to select detection objectives optimal for light-sheet imaging with large-sensor sCMOS cameras. The new mesoSPIM achieves high spatial resolution (1.5 µm laterally, 3.3 µm axially) across the entire field of view, a magnification up to 20x, and supports sample sizes ranging from sub-mm up to several centimetres, while being compatible with multiple clearing techniques. The new microscope serves a broad range of applications in neuroscience, developmental biology, and even physics.
RESUMEN
BACKGROUND: Metastasizing osteosarcoma has a mean 5-year survival rate of only 20% to 30%. Therefore, novel chemotherapeutics for more effective treatment of this disease are required. METHODS: The antineoplastic activity of honokiol, which was demonstrated previously in numerous malignancies, was studied in vivo in C3H mice subcutaneously injected with syngeneic ß-galactosidase bacterial gene (lacZ)-expressing LM8 osteosarcoma (LM8-lacZ) cells. In vitro cytotoxic effects of honokiol were investigated in 8 human and 2 murine osteosarcoma cell lines with different in vivo metastatic potential. RESULTS: Seven days after subcutaneous flank injection of LM8-lacZ cells, daily intraperitoneal treatment of mice with 150 mg/kg honokiol reduced the number of micrometastases in the lung by 41% and reduced the number of macrometastases in the lung and liver by 69% and 80%, respectively, compared with control. Primary tumor growth was not inhibited. In osteosarcoma cell lines, honokiol inhibited the metabolic activity with a half-maximal concentration (IC(50) ) between 8.0 µg/mL and 16 µg/mL. Cyclosporin A partially reversed the inhibition of metabolic activity in LM8-lacZ cells. Cell proliferation and wound healing migration of LM8-lacZ cells were inhibited by honokiol with an IC(50) between 5.0 µg/mL and 10 µg/mL. Higher concentrations caused rapid cell death, which was distinct from necrosis, apoptosis, or autophagy but was associated with swelling of the endoplasmic reticulum, cytoplasmic vacuolation, and morphologically altered mitochondria. CONCLUSIONS: Honokiol exhibited prominent antimetastatic activity in experimental osteosarcoma and caused rapid cell death in vitro that was unrelated to necrosis, apoptosis, or autophagy. The authors concluded that honokiol has considerable potential for the treatment of metastasizing osteosarcoma.
Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bifenilo/farmacología , Neoplasias Óseas/tratamiento farmacológico , Lignanos/farmacología , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/secundario , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/uso terapéutico , Neoplasias Óseas/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Lignanos/uso terapéutico , Neoplasias Hepáticas/prevención & control , Neoplasias Pulmonares/prevención & control , Ratones , Ratones Endogámicos C3H , Osteosarcoma/patologíaRESUMEN
The asymmetric outer membrane (OM) of Gram-negative bacteria contains lipopolysaccharide (LPS) in the outer leaflet and phospholipid in the inner leaflet. During OM biogenesis, LPS is transported from the periplasm into the outer leaflet by a complex comprising the OM proteins LptD and LptE. Recently, a new family of macrocyclic peptidomimetic antibiotics that interact with LptD of the opportunistic human pathogen Pseudomonas aeruginosa was discovered. Here we provide evidence that the peptidomimetics inhibit the LPS transport function of LptD. One approach to monitor LPS transport involved studies of lipid A modifications. Some modifications occur only in the inner membrane while others occur only in the OM, and thus provide markers for LPS transport within the bacterial envelope. We prepared a conditional lptD mutant of P. aeruginosa PAO1 that allowed control of lptD expression from the rhamnose promoter. With this mutant, the effects caused by the antibiotic on the wild-type strain were compared with those caused by depleting LptD in the mutant strain. When LptD was depleted in the mutant, electron microscopy revealed accumulation of membrane-like material within cells and OM blebbing; this mirrored similar effects in the wild-type strain caused by the antibiotic. Moreover, the bacterium responded to the antibiotic, and to depletion of LptD, by introducing the same lipid A modifications, consistent with inhibition by the antibiotic of LptD-mediated LPS transport. This conclusion was further supported by monitoring the radiolabelling of LPS from [¹4C]acetate, and by fractionation of IM and OM components. Overall, the results provide support for a mechanism of action for the peptidomimetic antibiotics that involves inhibition of LPS transport to the cell surface.
Asunto(s)
Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/efectos de los fármacos , Lipopolisacáridos/metabolismo , Peptidomiméticos/farmacología , Periplasma/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/química , Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Radioisótopos de Carbono , Membrana Celular/metabolismo , Escherichia coli , Prueba de Complementación Genética , Lípido A/química , Lípido A/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Microscopía Electrónica , Estructura Molecular , Mutación , Peptidomiméticos/química , Periplasma/metabolismo , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , TransfecciónRESUMEN
In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT) inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC) inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.