Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurooncol ; 166(3): 535-546, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316705

RESUMEN

BACKGROUND: Adverse radiation effect (ARE) following stereotactic radiosurgery (SRS) for brain metastases is challenging to distinguish from tumor progression. This study characterizes the clinical implications of radiologic uncertainty (RU). METHODS: Cases reviewed retrospectively at a single-institutional, multi-disciplinary SRS Tumor Board between 2015-2022 for RU following SRS were identified. Treatment history, diagnostic or therapeutic interventions performed upon RU resolution, and development of neurologic deficits surrounding intervention were obtained from the medical record. Differences in lesion volume and maximum diameter at RU onset versus resolution were compared with paired t-tests. Median time from RU onset to resolution was estimated using the Kaplan-Meier method. Univariate and multivariate associations between clinical characteristics and time to RU resolution were assessed with Cox proportional-hazards regression. RESULTS: Among 128 lesions with RU, 23.5% had undergone ≥ 2 courses of radiation. Median maximum diameter (20 vs. 16 mm, p < 0.001) and volume (2.7 vs. 1.5 cc, p < 0.001) were larger upon RU resolution versus onset. RU resolution took > 6 and > 12 months in 25% and 7% of cases, respectively. Higher total EQD2 prior to RU onset (HR = 0.45, p = 0.03) and use of MR perfusion (HR = 0.56, p = 0.001) correlated with shorter time to resolution; larger volume (HR = 1.05, p = 0.006) portended longer time to resolution. Most lesions (57%) were diagnosed as ARE. Most patients (58%) underwent an intervention upon RU resolution; of these, 38% developed a neurologic deficit surrounding intervention. CONCLUSIONS: RU resolution took > 6 months in > 25% of cases. RU may lead to suboptimal outcomes and symptom burden. Improved characterization of post-SRS RU is needed.


Asunto(s)
Neoplasias Encefálicas , Traumatismos por Radiación , Radiocirugia , Humanos , Radiocirugia/efectos adversos , Radiocirugia/métodos , Resultado del Tratamiento , Estudios Retrospectivos , Incertidumbre , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Traumatismos por Radiación/diagnóstico por imagen , Traumatismos por Radiación/etiología , Traumatismos por Radiación/cirugía
2.
Radiology ; 286(1): 93-102, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29059038

RESUMEN

Purpose To retrospectively validate a first-pass analysis (FPA) technique that combines computed tomographic (CT) angiography and dynamic CT perfusion measurement into one low-dose examination. Materials and Methods The study was approved by the animal care committee. The FPA technique was retrospectively validated in six swine (mean weight, 37.3 kg ± 7.5 [standard deviation]) between April 2015 and October 2016. Four to five intermediate-severity stenoses were generated in the left anterior descending artery (LAD), and 20 contrast material-enhanced volume scans were acquired per stenosis. All volume scans were used for maximum slope model (MSM) perfusion measurement, but only two volume scans were used for FPA perfusion measurement. Perfusion measurements in the LAD, left circumflex artery (LCx), right coronary artery, and all three coronary arteries combined were compared with microsphere perfusion measurements by using regression, root-mean-square error, root-mean-square deviation, Lin concordance correlation, and diagnostic outcomes analysis. The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were also determined. Results FPA and MSM perfusion measurements (PFPA and PMSM) in all three coronary arteries combined were related to reference standard microsphere perfusion measurements (PMICRO), as follows: PFPA_COMBINED = 1.02 PMICRO_COMBINED + 0.11 (r = 0.96) and PMSM_COMBINED = 0.28 PMICRO_COMBINED + 0.23 (r = 0.89). The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were 10.8 and 17.8 mGy, respectively. Conclusion The FPA technique was retrospectively validated in a swine model and has the potential to be used for accurate, low-dose vessel-specific morphologic and physiologic assessment of coronary artery disease. © RSNA, 2017.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen de Perfusión Miocárdica/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Área Bajo la Curva , Presión Sanguínea/fisiología , Modelos Animales de Enfermedad , Frecuencia Cardíaca/fisiología , Reproducibilidad de los Resultados , Porcinos
3.
Med Phys ; 50(5): 2662-2671, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36908243

RESUMEN

BACKGROUND: Misalignment to the incorrect vertebral body remains a rare but serious patient safety risk in image-guided radiotherapy (IGRT). PURPOSE: Our group has proposed that an automated image-review algorithm be inserted into the IGRT process as an interlock to detect off-by-one vertebral body errors. This study presents the development and multi-institutional validation of a convolutional neural network (CNN)-based approach for such an algorithm using patient image data from a planar stereoscopic x-ray IGRT system. METHODS: X-rays and digitally reconstructed radiographs (DRRs) were collected from 429 spine radiotherapy patients (1592 treatment fractions) treated at six institutions using a stereoscopic x-ray image guidance system. Clinically-applied, physician approved, alignments were used for true-negative, "no-error" cases. "Off-by-one vertebral body" errors were simulated by translating DRRs along the spinal column using a semi-automated method. A leave-one-institution-out approach was used to estimate model accuracy on data from unseen institutions as follows: All of the images from five of the institutions were used to train a CNN model from scratch using a fixed network architecture and hyper-parameters. The size of this training set ranged from 5700 to 9372 images, depending on exactly which five institutions were contributing data. The training set was randomized and split using a 75/25 split into the final training/ validation sets. X-ray/ DRR image pairs and the associated binary labels of "no-error" or "shift" were used as the model input. Model accuracy was evaluated using images from the sixth institution, which were left out of the training phase entirely. This test set ranged from 180 to 3852 images, again depending on which institution had been left out of the training phase. The trained model was used to classify the images from the test set as either "no-error" or "shifted", and the model predictions were compared to the ground truth labels to assess the model accuracy. This process was repeated until each institution's images had been used as the testing dataset. RESULTS: When the six models were used to classify unseen image pairs from the institution left out during training, the resulting receiver operating characteristic area under the curve values ranged from 0.976 to 0.998. With the specificity fixed at 99%, the corresponding sensitivities ranged from 61.9% to 99.2% (mean: 77.6%). With the specificity fixed at 95%, sensitivities ranged from 85.5% to 99.8% (mean: 92.9%). CONCLUSION: This study demonstrated the CNN-based vertebral body misalignment model is robust when applied to previously unseen test data from an outside institution, indicating that this proposed additional safeguard against misalignment is feasible.


Asunto(s)
Aprendizaje Profundo , Humanos , Rayos X , Cuerpo Vertebral , Estudios Retrospectivos , Redes Neurales de la Computación
4.
J Neurosurg ; 138(1): 104-112, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35594891

RESUMEN

OBJECTIVE: The authors previously evaluated risk and time course of adverse radiation effects (AREs) following stereotactic radiosurgery (SRS) for brain metastases, excluding lesions treated after prior SRS. In the present analysis they focus specifically on single-fraction salvage SRS to brain metastases previously treated with SRS or hypofractionated SRS (HFSRS), evaluating freedom from progression (FFP) and the risk and time course of AREs. METHODS: Brain metastases treated from September 1998 to May 2019 with single-fraction SRS after prior SRS or HFSRS were analyzed. Serial follow-up magnetic resonance imaging (MRI) and surgical pathology reports were reviewed to score local treatment failure and AREs. The Kaplan-Meier method was used to estimate FFP and risk of ARE measured from the date of repeat SRS with censoring at the last brain MRI. RESULTS: A total of 229 retreated brain metastases in 124 patients were evaluable. The most common primary cancers were breast, lung, and melanoma. The median interval from prior SRS/HFSRS to repeat SRS was 15.4 months, the median prescription dose was 18 Gy, and the median duration of follow-up imaging was 14.5 months. At 1 year after repeat SRS, FFP was 80% and the risk of symptomatic ARE was 11%. The 1-year risk of imaging changes, including asymptomatic RE and symptomatic ARE, was 30%. Among lesions that demonstrated RE, the median time to onset was 6.7 months (IQR 4.7-9.9 months) and the median time to peak imaging changes was 10.1 months (IQR 5.6-13.6 months). Lesion size by quadratic mean diameter (QMD) showed similar results for QMDs ranging from 0.75 to 2.0 cm (1-year FFP 82%, 1-year risk of symptomatic ARE 11%). For QMD < 0.75 cm, the 1-year FFP was 86% and the 1-year risk of symptomatic ARE was only 2%. Outcomes were worse for QMDs 2.01-3.0 cm (1-year FFP 65%, 1-year risk of symptomatic ARE 24%). The risk of symptomatic ARE was not increased with tyrosine kinase inhibitors or immunotherapy before or after repeat SRS. CONCLUSIONS: RE on imaging was common after repeat SRS (30% at 1 year), but the risk of a symptomatic ARE was much less (11% at 1 year). The results of repeat single-fraction SRS were good for brain metastases ≤ 2 cm. The authors recommend an interval ≥ 6 months from prior SRS and a prescription dose ≥ 18 Gy. Alternatives such as HFSRS, laser interstitial thermal therapy, or resection with adjuvant radiation should be considered for recurrent brain metastases > 2 cm.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Traumatismos por Radiación , Radiocirugia , Humanos , Radiocirugia/efectos adversos , Radiocirugia/métodos , Estudios Retrospectivos , Traumatismos por Radiación/diagnóstico por imagen , Traumatismos por Radiación/etiología , Traumatismos por Radiación/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Melanoma/secundario , Resultado del Tratamiento
5.
Pract Radiat Oncol ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37981253

RESUMEN

PURPOSE: Lung blocks for total-body irradiation are commonly used to reduce lung dose and prevent radiation pneumonitis. Currently, molten Cerrobend containing toxic materials, specifically lead and cadmium, is poured into molds to construct blocks. We propose a streamlined method to create 3-dimensional (3D)-printed lung block shells and fill them with tungsten ball bearings to remove lead and improve overall accuracy in the block manufacturing workflow. METHODS AND MATERIALS: 3D-printed lung block shells were automatically generated using an inhouse software, printed, and filled with 2 to 3 mm diameter tungsten ball bearings. Clinical Cerrobend blocks were compared with the physician drawn blocks as well as our proposed tungsten filled 3D-printed blocks. Physical and dosimetric comparisons were performed on a linac. Dose transmission through the Cerrobend and 3D-printed blocks were measured using point dosimetry (ion-chamber) and the on-board Electronic-Portal-Imaging-Device (EPID). Dose profiles from the EPID images were used to compute the full-width-half-maximum and to compare with the treatment-planning-system. Additionally, the coefficient-of-variation in the central 80% of full-width-half-maximum was computed and compared between Cerrobend and 3D-printed blocks. RESULTS: The geometric difference between treatment-planning-system and 3D-printed blocks was significantly lower than Cerrobend blocks (3D: -0.88 ± 2.21 mm, Cerrobend: -2.28 ± 2.40 mm, P = .0002). Dosimetrically, transmission measurements through the 3D-printed and Cerrobend blocks for both ion-chamber and EPID dosimetry were between 42% to 48%, compared with the open field. Additionally, coefficient-of-variation was significantly higher in 3D-printed blocks versus Cerrobend blocks (3D: 4.2% ± 0.6%, Cerrobend: 2.6% ± 0.7%, P < .0001). CONCLUSIONS: We designed and implemented a tungsten filled 3D-printed workflow for constructing total-body-irradiation lung blocks, which serves as an alternative to the traditional Cerrobend based workflow currently used in clinics. This workflow has the capacity of producing clinically useful lung blocks with minimal effort to facilitate the removal of toxic materials from the clinic.

6.
Semin Radiat Oncol ; 32(4): 421-431, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36202444

RESUMEN

Recent advancements in artificial intelligence (AI) in the domain of radiation therapy (RT) and their integration into modern software-based systems raise new challenges to the profession of medical physics experts. These AI algorithms are typically data-driven, may be continuously evolving, and their behavior has a degree of (acceptable) uncertainty due to inherent noise in training data and the substantial number of parameters that are used in the algorithms. These characteristics request adaptive, and new comprehensive quality assurance (QA) approaches to guarantee the individual patient treatment quality during AI algorithm development and subsequent deployment in a clinical RT environment. However, the QA for AI-based systems is an emerging area, which has not been intensively explored and requires interactive collaborations between medical doctors, medical physics experts, and commercial/research AI institutions. This article summarizes the current QA methodologies for AI modules of every subdomain in RT with further focus on persistent shortcomings and upcoming key challenges and perspectives.


Asunto(s)
Algoritmos , Inteligencia Artificial , Humanos
7.
J Neurosurg ; : 1-7, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35061986

RESUMEN

OBJECTIVE: The authors' objective was to examine the safety and efficacy of salvage intracranial cesium-131 brachytherapy in combination with resection of recurrent brain tumors. METHODS: The authors conducted a retrospective chart review of consecutive patients treated with intraoperative intracranial cesium-131 brachytherapy at a single institution. Permanent suture-stranded cesium-131 seeds were implanted in the resection cavity after maximal safe tumor resection. The primary outcomes of interest were local, locoregional (within 1 cm), and intracranial control, as well as rates of overall survival (OS), neurological death, symptomatic adverse radiation effects (AREs), and surgical complication rate graded according to Common Terminology Criteria for Adverse Events version 5.0. RESULTS: Between 2016 and 2020, 36 patients received 40 consecutive cesium-131 implants for 42 recurrent brain tumors and received imaging follow-up for a median (interquartile range [IQR]) of 17.0 (12.7-25.9) months. Twenty patients (55.6%) with 22 implants were treated for recurrent brain metastasis, 12 patients (33.3%) with 16 implants were treated for recurrent atypical (n = 7) or anaplastic (n = 5) meningioma, and 4 patients (11.1%) were treated for other recurrent primary brain neoplasms. All except 1 tumor (97.6%) had received prior radiotherapy, including 20 (47.6%) that underwent 2 or more prior radiotherapy treatments and 23 (54.8%) that underwent prior resection. The median (IQR) tumor size was 3.0 (2.3-3.7) cm, and 17 lesions (40.5%) had radiographic evidence of ARE prior to salvage therapy. Actuarial 1-year local/locoregional/intracranial control rates for the whole cohort and patients with metastases and meningiomas were 91.6%/83.4%/47.9%, 88.8%/84.4%/45.4%, and 100%/83.9%/46.4%, respectively. No cases of local recurrence of any histology (0 of 27) occurred after gross-total resection (p = 0.012, log-rank test). The 1-year OS rates for the whole cohort and patients with metastases and meningiomas were 82.7%, 79.1%, and 91.7%, respectively, and the median (IQR) survival of all patients was 26.7 (15.6-36.4) months. Seven patients (19.4%) experienced neurological death from progressive intracranial disease (7 of 14 total deaths [50%]), 5 (13.9%) of whom died of leptomeningeal disease. Symptomatic AREs were observed in 9.5% of resection cavities (n = 4), of which 1 (2.4%) was grade 3 in severity. The surgical complication rate was 16.7% (n = 7); 4 (9.5%) of these patients had grade 3 or higher complications, including 1 patient (2.4%) who died perioperatively. CONCLUSIONS: Cesium-131 brachytherapy resulted in good local control and acceptable rates of symptomatic AREs and surgical complications in this heavily pretreated cohort, and it may be a reasonable salvage adjuvant treatment for this patient population.

8.
Int J Radiat Oncol Biol Phys ; 110(2): 429-437, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33385496

RESUMEN

PURPOSE: To perform a propensity-score matched analysis comparing stereotactic body radiation therapy (SBRT) boost and high-dose-rate (HDR) boost for localized prostate cancer. METHODS AND MATERIALS: A single-institution retrospective chart review was conducted of men treated with pelvic external beam radiation therapy (EBRT) and SBRT boost (21 Gy and 19 Gy in 2 fractions) to the prostate for prostate cancer. A cohort treated at the same institution with HDR brachytherapy boost (19 Gy in 2 fractions) was compared. Propensity-score (PS) matching and multivariable Cox regression were used for analysis. Outcomes were biochemical recurrence freedom (BCRF) and metastasis freedom (MF). RESULTS: One hundred thirty-one men were treated with SBRT boost and 101 with HDR boost with median follow-up of 73.4 and 186.0 months, respectively. In addition, 68.8% of men had high-risk and 26.0% had unfavorable-intermediate disease, and 94.3% received androgen deprivation therapy. Five- and 10-year unadjusted BCRF was 88.8% and 85.3% for SBRT and 91.8% and 74.6% for HDR boost (log-rank P = .3), and 5- and 10-year unadjusted MF was 91.7% and 84.3% for SBRT and 95.8% and 82.0% for HDR (log-rank P = .8). After adjusting for covariates, there was no statistically significant difference in BCRF (hazard ratio [HR] 0.81; 95% confidence interval [CI], 0.37-1.79; P = .6) or MF (HR 1.07; 95% CI, 0.44-2.57; P = .9) between SBRT and HDR boost. Similarly, after PS matching, there was no statistically significant difference between SBRT and HDR (BCRF: HR 0.66, 0.27-1.62, P = .4; MF: HR 0.84, 0.31-2.26, P = .7). Grade 3+ genitourinary and gastrointestinal toxicity in the SBRT cohort were 4.6% and 1.5%, and 3.0% and 0.0% in the HDR cohorts (P = .4, Fisher exact test). CONCLUSIONS: SBRT boost plus pelvic EBRT for prostate cancer resulted in similar BCRF and MF to HDR boost in this single institution, PS matched retrospective analysis. Toxicity was modest. Prospective evaluation of SBRT boost for the treatment of unfavorable-intermediate and high-risk prostate cancer is warranted.


Asunto(s)
Braquiterapia/métodos , Neoplasias de la Próstata/radioterapia , Radiocirugia , Radioterapia de Intensidad Modulada , Anciano , Antagonistas de Andrógenos/uso terapéutico , Anilidas/uso terapéutico , Braquiterapia/efectos adversos , Estudios de Cohortes , Terapia Combinada/métodos , Intervalos de Confianza , Fraccionamiento de la Dosis de Radiación , Humanos , Leuprolida/uso terapéutico , Masculino , Persona de Mediana Edad , Nitrilos/uso terapéutico , Puntaje de Propensión , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Radiocirugia/efectos adversos , Radioterapia de Intensidad Modulada/efectos adversos , Análisis de Regresión , Estudios Retrospectivos , Compuestos de Tosilo/uso terapéutico
9.
Radiol Artif Intell ; 2(2): e190027, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33937817

RESUMEN

PURPOSE: To suggest an attention-aware, cycle-consistent generative adversarial network (A-CycleGAN) enhanced with variational autoencoding (VAE) as a superior alternative to current state-of-the-art MR-to-CT image translation methods. MATERIALS AND METHODS: An attention-gating mechanism is incorporated into a discriminator network to encourage a more parsimonious use of network parameters, whereas VAE enhancement enables deeper discrimination architectures without inhibiting model convergence. Findings from 60 patients with head, neck, and brain cancer were used to train and validate A-CycleGAN, and findings from 30 patients were used for the holdout test set and were used to report final evaluation metric results using mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). RESULTS: A-CycleGAN achieved superior results compared with U-Net, a generative adversarial network (GAN), and a cycle-consistent GAN. The A-CycleGAN averages, 95% confidence intervals (CIs), and Wilcoxon signed-rank two-sided test statistics are shown for MAE (19.61 [95% CI: 18.83, 20.39], P = .0104), structure similarity index metric (0.778 [95% CI: 0.758, 0.798], P = .0495), and PSNR (62.35 [95% CI: 61.80, 62.90], P = .0571). CONCLUSION: A-CycleGANs were a superior alternative to state-of-the-art MR-to-CT image translation methods.© RSNA, 2020.

10.
Pract Radiat Oncol ; 9(4): 257-265, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30826481

RESUMEN

PURPOSE: Knowledge-based planning (KBP) clinical implementation necessitates significant upfront effort, even within a single disease site. The purpose of this study was to demonstrate an efficient method for clinicians to assess the noninferiority of KBP across multiple disease sites and estimate any systematic dosimetric differences after implementation. We sought to establish these endpoints in a plurality of previously treated patients (validation set) with both closed-loop (training set overlapping validation set) and open-loop (independent training set) KBP routines. METHODS AND MATERIALS: We identified 53 prostate, 24 prostatic fossa, 54 hypofractionated lung, and 52 head and neck patients treated with volumetric modulated arc therapy in the year directly preceding our clinic's broad adoption of RapidPlan (Varian Medical Systems, Palo Alto, CA). Using the Varian Eclipse Scripting API, our program takes as input a list of patients, then performs semiautomated structure matching, fully automated RapidPlan-driven optimization, and plan comparison. All plans were normalized to the planning target volume (PTV) D95% = 100%. Dose metric differences (ΔDx = Dx,clinical - Dx,KBP) were computed for standard PTV and organ-at-risk (OAR) dose-volume histogram parameters across disease sites. A 2-tailed paired t test quantified statistical significance (P < .001). RESULTS: Statistically significant organ dose-volume histogram improvements were observed in the KBP cohort: the rectum, bladder, and penile bulb in prostate/prostatic fossa; and the larynx, esophagus, cricopharyngeus, parotid glands, and cochlea in head and neck. No OAR dose metric was statistically worse in any KBP sample. PTV ΔD1% increases in prostatic fossa were deemed acceptable given organ-sparing gains. PTV ΔD1% and internal target volume ΔD99% increase for the lung was by design owing to the prescription normalization variance in the pre-KBP lung sample. CONCLUSIONS: Our automated method showed multiple disease sites' KBP routines to be noninferior to manual planning, with statistically significant superiority in some aspects of OAR sparing. This method is applicable to any institution implementing either closed-loop or open-loop KBP autoplanning routines.


Asunto(s)
Enfermedad/genética , Bases del Conocimiento , Radioterapia de Intensidad Modulada/métodos , Humanos , Masculino , Estudios Retrospectivos , Estudios de Validación como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA