RESUMEN
Enteroendocrine cells (EECs) sense intestinal content and release hormones to regulate gastrointestinal activity, systemic metabolism, and food intake. Little is known about the molecular make-up of human EEC subtypes and the regulated secretion of individual hormones. Here, we describe an organoid-based platform for functional studies of human EECs. EEC formation is induced in vitro by transient expression of NEUROG3. A set of gut organoids was engineered in which the major hormones are fluorescently tagged. A single-cell mRNA atlas was generated for the different EEC subtypes, and their secreted products were recorded by mass-spectrometry. We note key differences to murine EECs, including hormones, sensory receptors, and transcription factors. Notably, several hormone-like molecules were identified. Inter-EEC communication is exemplified by secretin-induced GLP-1 secretion. Indeed, individual EEC subtypes carry receptors for various EEC hormones. This study provides a rich resource to study human EEC development and function.
Asunto(s)
Células Enteroendocrinas/metabolismo , ARN Mensajero/genética , Células Cultivadas , Hormonas Gastrointestinales/genética , Tracto Gastrointestinal/metabolismo , Péptido 1 Similar al Glucagón/genética , Humanos , Organoides/metabolismo , Factores de Transcripción/genética , Transcriptoma/genéticaRESUMEN
Bacterial lipopolysaccharide triggers human caspase-4 (murine caspase-11) to cleave gasdermin-D and induce pyroptotic cell death. How lipopolysaccharide sequestered in the membranes of cytosol-invading bacteria activates caspases remains unknown. Here we show that in interferon-γ-stimulated cells guanylate-binding proteins (GBPs) assemble on the surface of Gram-negative bacteria into polyvalent signaling platforms required for activation of caspase-4. Caspase-4 activation is hierarchically controlled by GBPs; GBP1 initiates platform assembly, GBP2 and GBP4 control caspase-4 recruitment, and GBP3 governs caspase-4 activation. In response to cytosol-invading bacteria, activation of caspase-4 through the GBP platform is essential to induce gasdermin-D-dependent pyroptosis and processing of interleukin-18, thereby destroying the replicative niche for intracellular bacteria and alerting neighboring cells, respectively. Caspase-11 and GBPs epistatically protect mice against lethal bacterial challenge. Multiple antagonists of the pathway encoded by Shigella flexneri, a cytosol-adapted bacterium, provide compelling evolutionary evidence for the importance of the GBP-caspase-4 pathway in antibacterial defense.
Asunto(s)
Caspasas Iniciadoras/inmunología , Proteínas de Unión al GTP/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Inflamasomas/inmunología , Transducción de Señal/inmunología , Animales , Bacterias Gramnegativas/inmunología , Células HeLa , Humanos , Lipopolisacáridos/inmunología , Ratones , Piroptosis/inmunologíaRESUMEN
The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.
Asunto(s)
Envejecimiento , Sistema Nervioso Entérico/citología , Feto/citología , Salud , Intestinos/citología , Intestinos/crecimiento & desarrollo , Ganglios Linfáticos/citología , Ganglios Linfáticos/crecimiento & desarrollo , Adulto , Animales , Niño , Enfermedad de Crohn/patología , Conjuntos de Datos como Asunto , Sistema Nervioso Entérico/anatomía & histología , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/crecimiento & desarrollo , Células Epiteliales/citología , Femenino , Feto/anatomía & histología , Feto/embriología , Humanos , Intestinos/embriología , Intestinos/inervación , Ganglios Linfáticos/embriología , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Organogénesis , Receptores de IgG/metabolismo , Transducción de Señal , Análisis Espacio-Temporal , Factores de TiempoRESUMEN
The colorectal adenoma-carcinoma sequence has provided a paradigmatic framework for understanding the successive somatic genetic changes and consequent clonal expansions that lead to cancer1. However, our understanding of the earliest phases of colorectal neoplastic changes-which may occur in morphologically normal tissue-is comparatively limited, as for most cancer types. Here we use whole-genome sequencing to analyse hundreds of normal crypts from 42 individuals. Signatures of multiple mutational processes were revealed; some of these were ubiquitous and continuous, whereas others were only found in some individuals, in some crypts or during certain periods of life. Probable driver mutations were present in around 1% of normal colorectal crypts in middle-aged individuals, indicating that adenomas and carcinomas are rare outcomes of a pervasive process of neoplastic change across morphologically normal colorectal epithelium. Colorectal cancers exhibit substantially increased mutational burdens relative to normal cells. Sequencing normal colorectal cells provides quantitative insights into the genomic and clonal evolution of cancer.
Asunto(s)
Colon/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Mutación , Síntomas Prodrómicos , Recto/citología , Adenoma/genética , Adenoma/patología , Anciano , Proteína Axina/genética , Carcinoma/genética , Carcinoma/patología , Transformación Celular Neoplásica , Células Clonales/citología , Células Clonales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Femenino , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad , Células Madre/citología , Células Madre/metabolismoRESUMEN
OBJECTIVE: Epigenetic mechanisms, including DNA methylation (DNAm), have been proposed to play a key role in Crohn's disease (CD) pathogenesis. However, the specific cell types and pathways affected as well as their potential impact on disease phenotype and outcome remain unknown. We set out to investigate the role of intestinal epithelial DNAm in CD pathogenesis. DESIGN: We generated 312 intestinal epithelial organoids (IEOs) from mucosal biopsies of 168 patients with CD (n=72), UC (n=23) and healthy controls (n=73). We performed genome-wide molecular profiling including DNAm, bulk as well as single-cell RNA sequencing. Organoids were subjected to gene editing and the functional consequences of DNAm changes evaluated using an organoid-lymphocyte coculture and a nucleotide-binding oligomerisation domain, leucine-rich repeat and CARD domain containing 5 (NLRC5) dextran sulphate sodium (DSS) colitis knock-out mouse model. RESULTS: We identified highly stable, CD-associated loss of DNAm at major histocompatibility complex (MHC) class 1 loci including NLRC5 and cognate gene upregulation. Single-cell RNA sequencing of primary mucosal tissue and IEOs confirmed the role of NLRC5 as transcriptional transactivator in the intestinal epithelium. Increased mucosal MHC-I and NLRC5 expression in adult and paediatric patients with CD was validated in additional cohorts and the functional role of MHC-I highlighted by demonstrating a relative protection from DSS-mediated mucosal inflammation in NLRC5-deficient mice. MHC-I DNAm in IEOs showed a significant correlation with CD disease phenotype and outcomes. Application of machine learning approaches enabled the development of a disease prognostic epigenetic molecular signature. CONCLUSIONS: Our study has identified epigenetically regulated intestinal epithelial MHC-I as a novel mechanism in CD pathogenesis.
Asunto(s)
Enfermedad de Crohn , Metilación de ADN , Epigénesis Genética , Mucosa Intestinal , Organoides , Humanos , Enfermedad de Crohn/genética , Enfermedad de Crohn/patología , Enfermedad de Crohn/metabolismo , Organoides/metabolismo , Organoides/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Animales , Femenino , Masculino , Ratones Noqueados , Bancos de Muestras Biológicas , Adulto , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
Human tissue three-dimensional (3D) organoid cultures have the potential to reproduce in vitro the physiological properties and cellular architecture of the organs from which they are derived. The ability of organoid cultures derived from human stomach, liver, kidney, and colon to metabolically activate three dietary carcinogens, aflatoxin B1 (AFB1), aristolochic acid I (AAI), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was investigated. In each case, the response of a target tissue (liver for AFB1; kidney for AAI; colon for PhIP) was compared with that of a nontarget tissue (gastric). After treatment cell viabilities were measured, DNA damage response (DDR) was determined by Western blotting for p-p53, p21, p-CHK2, and γ-H2AX, and DNA adduct formation was quantified by mass spectrometry. Induction of the key xenobiotic-metabolizing enzymes (XMEs) CYP1A1, CYP1A2, CYP3A4, and NQO1 was assessed by qRT-PCR. We found that organoids from different tissues can activate AAI, AFB1, and PhIP. In some cases, this metabolic potential varied between tissues and between different cultures of the same tissue. Similarly, variations in the levels of expression of XMEs were observed. At comparable levels of cytotoxicity, organoids derived from tissues that are considered targets for these carcinogens had higher levels of adduct formation than a nontarget tissue.
Asunto(s)
Aductos de ADN , Neoplasias , Humanos , Carcinógenos/toxicidad , Carcinógenos/metabolismo , Hígado/metabolismo , Organoides/metabolismoRESUMEN
Stratified and precision nutrition refers to disease management or prevention of disease onset, based on dietary interventions tailored to a person's characteristics, biology, gut microbiome, and environmental exposures. Such treatment models may lead to more effective management of inflammatory bowel disease (IBD) and reduce risk of disease development. This societal position paper aimed to report advances made in stratified and precision nutritional therapy in IBD. Following a structured literature search, limited to human studies, we identified four relevant themes: (a) nutritional epidemiology for risk prediction of IBD development, (b) food-based dietary interventions in IBD, (c) exclusive enteral nutrition (EEN) for Crohn's disease (CD) management, and (d) pre- and probiotics for IBD management. There is scarce literature upon which we can make recommendations for precision or stratified dietary therapy for IBD, both for risk of disease development and disease management. Certain single-nucleotide polymorphisms related to polyunsaturated fatty acid (PUFA) metabolism may modify the effect dietary PUFA have in increasing the risk of IBD development. Non-colonic CD, mild-to-moderate CD, and high microbiota richness may predict success of EEN and may be used both for prediction of treatment continuation, but also for early cessation in nonresponders. There is currently insufficient evidence to make recommendations for precision or stratified dietary therapy for patients with established IBD. Despite the great interest in stratified and precision nutrition, we currently lack data to support conclusive recommendations. Replication of early findings by independent research groups and within structured clinical interventions is required.
Asunto(s)
Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Niño , Investigación Biomédica Traslacional , Opinión Pública , Enfermedades Inflamatorias del Intestino/terapia , Enfermedad de Crohn/terapia , Inducción de Remisión , Técnicos Medios en SaludRESUMEN
BACKGROUND & AIMS: Monogenic forms of inflammatory bowel disease (IBD) illustrate the essential roles of individual genes in pathways and networks safeguarding immune tolerance and gut homeostasis. METHODS: To build a taxonomy model, we assessed 165 disorders. Genes were prioritized based on penetrance of IBD and disease phenotypes were integrated with multi-omics datasets. Monogenic IBD genes were classified by (1) overlapping syndromic features, (2) response to hematopoietic stem cell transplantation, (3) bulk RNA-sequencing of 32 tissues, (4) single-cell RNA-sequencing of >50 cell subsets from the intestine of healthy individuals and patients with IBD (pediatric and adult), and (5) proteomes of 43 immune subsets. The model was validated by addition of newly identified monogenic IBD defects. As a proof-of-concept, we explore the intersection between immunometabolism and antimicrobial activity for a group of disorders (G6PC3/SLC37A4). RESULTS: Our quantitative integrated taxonomy defines the cellular landscape of monogenic IBD gene expression across 102 genes with high and moderate penetrance (81 in the model set and 21 genes in the validation set). We illustrate distinct cellular networks, highlight expression profiles across understudied cell types (e.g., CD8+ T cells, neutrophils, epithelial subsets, and endothelial cells) and define genotype-phenotype associations (perianal disease and defective antimicrobial activity). We illustrate processes and pathways shared across cellular compartments and phenotypic groups and highlight cellular immunometabolism with mammalian target of rapamycin activation as one of the converging pathways. There is an overlap of genes and enriched cell-specific expression between monogenic and polygenic IBD. CONCLUSION: Our taxonomy integrates genetic, clinical and multi-omic data; providing a basis for genomic diagnostics and testable hypotheses for disease functions and treatment responses.
Asunto(s)
Enfermedades Inflamatorias del Intestino/clasificación , Enfermedades Inflamatorias del Intestino/genética , Edad de Inicio , Antiportadores/genética , Células Cultivadas , Clasificación , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Genotipo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfato/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Macrófagos , Metabolómica , Proteínas de Transporte de Monosacáridos/genética , Penetrancia , Fenotipo , Transducción de Señal/genéticaRESUMEN
BACKGROUND: Oral delivery remains unattainable for nucleic acid therapies. Many nanoparticle-based drug delivery systems have been investigated for this, but most suffer from poor gut stability, poor mucus diffusion and/or inefficient epithelial uptake. Extracellular vesicles from bovine milk (mEVs) possess desirable characteristics for oral delivery of nucleic acid therapies since they both survive digestion and traverse the intestinal mucosa. RESULTS: Using novel tools, we comprehensively examine the intestinal delivery of mEVs, probing whether they could be used as, or inform the design of, nanoparticles for oral nucleic acid therapies. We show that mEVs efficiently translocate across the Caco-2 intestinal model, which is not compromised by treatment with simulated intestinal fluids. For the first time, we also demonstrate transport of mEVs in novel 3D 'apical-out' and monolayer-based human intestinal epithelial organoids (IEOs). Importantly, mEVs loaded with small interfering RNA (siRNA) induced (glyceraldehyde 3-phosphate dehydrogenase, GAPDH) gene silencing in macrophages. Using inflammatory bowel disease (IBD) as an example application, we show that administration of anti-tumour necrosis factor alpha (TNFα) siRNA-loaded mEVs reduced inflammation in a IBD rat model. CONCLUSIONS: Together, this work demonstrates that mEVs could either act as natural and safe systems for oral delivery or nucleic acid therapies, or inform the design of synthetic systems for such application.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Nanopartículas , Ácidos Nucleicos , Humanos , Ratas , Animales , Células CACO-2 , Leche , ARN Interferente Pequeño/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Mucosa IntestinalRESUMEN
BACKGROUND & AIMS: Gene expression patterns of CD8+ T cells have been reported to correlate with clinical outcomes of adults with inflammatory bowel diseases (IBD). We aimed to validate these findings in independent patient cohorts. METHODS: We obtained peripheral blood samples from 112 children with a new diagnosis of IBD (71 with Crohn's disease and 41 with ulcerative colitis) and 19 children without IBD (controls) and recorded medical information on disease activity and outcomes. CD8+ T cells were isolated from blood samples by magnetic bead sorting at the point of diagnosis and during the course of disease. Genome-wide transcription (n = 192) and DNA methylation (n = 66) profiles were generated using Affymetrix and Illumina arrays, respectively. Publicly available transcriptomes and DNA methylomes of CD8+ T cells from 3 adult patient cohorts with and without IBD were included in data analyses. RESULTS: Previously reported CD8+ T-cell prognostic expression and exhaustion signatures were only found in the original adult IBD patient cohort. These signatures could not be detected in either a pediatric or a second adult IBD cohort. In contrast, an association between CD8+ T-cell gene expression with age and sex was detected across all 3 cohorts. CD8+ gene transcription was clearly associated with IBD in the 2 cohorts that included non-IBD controls. Lastly, DNA methylation profiles of CD8+ T cells from children with Crohn's disease correlated with age but not with disease outcome. CONCLUSIONS: We were unable to validate previously reported findings of an association between CD8+ T-cell gene transcription and disease outcome in IBD. Our findings reveal the challenges of developing prognostic biomarkers for patients with IBD and the importance of their validation in large, independent cohorts before clinical application.
Asunto(s)
Linfocitos T CD8-positivos/fisiología , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/etiología , Adolescente , Adulto , Factores de Edad , Estudios de Casos y Controles , Niño , Preescolar , Metilación de ADN , Femenino , Humanos , Masculino , Valor Predictivo de las Pruebas , Pronóstico , Transcripción Genética , Adulto JovenRESUMEN
BACKGROUND AND AIMS: Organoids provide a powerful system to study epithelia in vitro. Recently, this approach was applied successfully to the biliary tree, a series of ductular tissues responsible for the drainage of bile and pancreatic secretions. More precisely, organoids have been derived from ductal tissue located outside (extrahepatic bile ducts; EHBDs) or inside the liver (intrahepatic bile ducts; IHBDs). These organoids share many characteristics, including expression of cholangiocyte markers such as keratin (KRT) 19. However, the relationship between these organoids and their tissues of origin, and to each other, is largely unknown. APPROACH AND RESULTS: Organoids were derived from human gallbladder, common bile duct, pancreatic duct, and IHBDs using culture conditions promoting WNT signaling. The resulting IHBD and EHBD organoids expressed stem/progenitor markers leucine-rich repeat-containing G-protein-coupled receptor 5/prominin 1 and ductal markers KRT19/KRT7. However, RNA sequencing revealed that organoids conserve only a limited number of regional-specific markers corresponding to their location of origin. Of particular interest, down-regulation of biliary markers and up-regulation of cell-cycle genes were observed in organoids. IHBD and EHBD organoids diverged in their response to WNT signaling, and only IHBDs were able to express a low level of hepatocyte markers under differentiation conditions. CONCLUSIONS: Taken together, our results demonstrate that differences exist not only between extrahepatic biliary organoids and their tissue of origin, but also between IHBD and EHBD organoids. This information may help to understand the tissue specificity of cholangiopathies and also to identify targets for therapeutic development.
Asunto(s)
Conductos Biliares Extrahepáticos/citología , Conductos Biliares Intrahepáticos/citología , Células Epiteliales/citología , Organoides/fisiología , Animales , Bilis , Conductos Biliares Extrahepáticos/fisiología , Conductos Biliares Intrahepáticos/fisiología , Diferenciación Celular , Conducto Colédoco/citología , Células Epiteliales/fisiología , Vesícula Biliar/citología , Regulación de la Expresión Génica , Humanos , Queratina-19/análisis , Hígado/fisiología , Ratones , RNA-Seq , Obtención de Tejidos y ÓrganosRESUMEN
ABSTRACT: Recent research breakthroughs have emerged from applied basic research throughout all scientific areas, including adult and paediatric gastroenterology, hepatology and nutrition (PGHAN). The research landscape within the European Society of Paediatric Gastroenterology and Nutrition (ESPGHAN) is also inevitably changing from clinical research to studies involving applied laboratory research. This position paper aims to depict the current status quo of basic science and translational research within ESPGHAN, and to delineate how the society could invest in research in the present and future time. The paper also explores which research areas in the field of PGHAN represent the current and future priorities, and what type of support is needed across the ESPGHAN working groups (WGs) and special interest groups (SIGs) to fulfil their research goals.
Asunto(s)
Gastroenterología , Niño , Fenómenos Fisiológicos Nutricionales Infantiles , Humanos , Opinión Pública , Sociedades Médicas , Investigación Biomédica TraslacionalRESUMEN
OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition in children characterised by insulin resistance and altered lipid metabolism. Affected patients are at increased risk of cardiovascular disease (CVD) and children with NAFLD are likely to be at risk of premature cardiac events. Evaluation of the plasma lipid profile of children with NAFLD offers the opportunity to investigate these perturbations and understand how closely they mimic the changes seen in adults with cardiometabolic disease. METHODS: We performed untargeted liquid chromatography-mass spectrometry (LC-MS) plasma lipidomics on 287 children: 19 lean controls, 146 from an obese cohort, and 122 NAFLD cases who had undergone liver biopsy. Associations between lipid species and liver histology were assessed using regression adjusted for age and sex. Results were then replicated using data from 9500 adults with metabolic phenotyping. RESULTS: More severe paediatric NAFLD was associated with lower levels of long chain, polyunsaturated phosphatidylcholines (pC) and triglycerides (TG). Similar trends in pC and TG chain length and saturation were seen in adults with hepatic steatosis; however, many of the specific lipids associated with NAFLD differed between children and adults. Five lipids replicated in adults (including PC(36:4)) have been directly linked to death and cardiometabolic disease, as well as indirectly via genetic variants. CONCLUSION: These findings suggest that, whilst similar pathways of lipid metabolism are perturbed in paediatric NAFLD as in cardiometabolic disease in adults, the specific lipid signature in children is different.
Asunto(s)
Enfermedades Cardiovasculares , Enfermedad del Hígado Graso no Alcohólico , Adulto , Enfermedades Cardiovasculares/etiología , Niño , Estudios Transversales , Humanos , Lipidómica , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología , TriglicéridosRESUMEN
Organoids are 3D cultures that to some extent reproduce the structure, composition and function of the mammalian tissues from which they derive, thereby creating in vitro systems with more in vivo-like characteristics than 2D monocultures. Here, the ability of human organoids derived from normal gastric, pancreas, liver, colon and kidney tissues to metabolise the environmental carcinogen benzo[a]pyrene (BaP) was investigated. While organoids from the different tissues showed varied cytotoxic responses to BaP, with gastric and colon organoids being the most susceptible, the xenobiotic-metabolising enzyme (XME) genes, CYP1A1 and NQO1, were highly upregulated in all organoid types, with kidney organoids having the highest levels. Furthermore, the presence of two key metabolites, BaP-t-7,8-dihydrodiol and BaP-tetrol-l-1, was detected in all organoid types, confirming their ability to metabolise BaP. BaP bioactivation was confirmed both by the activation of the DNA damage response pathway (induction of p-p53, pCHK2, p21 and γ-H2AX) and by DNA adduct formation. Overall, pancreatic and undifferentiated liver organoids formed the highest levels of DNA adducts. Colon organoids had the lowest responses in DNA adduct and metabolite formation, as well as XME expression. Additionally, high-throughput RT-qPCR explored differences in gene expression between organoid types after BaP treatment. The results demonstrate the potential usefulness of organoids for studying environmental carcinogenesis and genetic toxicology.
Asunto(s)
Benzo(a)pireno , Aductos de ADN , Organoides , Humanos , Activación Metabólica , Benzo(a)pireno/toxicidad , Citocromo P-450 CYP1A1/metabolismo , Aductos de ADN/metabolismo , Hígado/metabolismo , Organoides/efectos de los fármacos , Organoides/metabolismoRESUMEN
BACKGROUND & AIMS: Excess and unresolved endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) promotes intestinal inflammation. Activating transcription factor 6 (ATF6) is one of the signaling mediators of ER stress. We studied the pathways that regulate ATF6 and its role for inflammation in IECs. METHODS: We performed an RNA interference screen, using 23,349 unique small interfering RNAs targeting 7783 genes and a luciferase reporter controlled by an ATF6-dependent ERSE (ER stress-response element) promoter, to identify proteins that activate or inhibit the ATF6 signaling pathway in HEK293 cells. To validate the screening results, intestinal epithelial cell lines (Caco-2 cells) were transfected with small interfering RNAs or with a plasmid overexpressing a constitutively active form of ATF6. Caco-2 cells with a CRISPR-mediated disruption of autophagy related 16 like 1 gene (ATG16L1) were used to study the effect of ATF6 on ER stress in autophagy-deficient cells. We also studied intestinal organoids derived from mice that overexpress constitutively active ATF6, from mice with deletion of the autophagy related 16 like 1 or X-Box binding protein 1 gene in IECs (Atg16l1ΔIEC or Xbp1ΔIEC, which both develop spontaneous ileitis), from patients with Crohn's disease (CD) and healthy individuals (controls). Cells and organoids were incubated with tunicamycin to induce ER stress and/or chemical inhibitors of newly identified activator proteins of ATF6 signaling, and analyzed by real-time polymerase chain reaction and immunoblots. Atg16l1ΔIEC and control (Atg16l1fl/fl) mice were given intraperitoneal injections of tunicamycin and were treated with chemical inhibitors of ATF6 activating proteins. RESULTS: We identified and validated 15 suppressors and 7 activators of the ATF6 signaling pathway; activators included the regulatory subunit of casein kinase 2 (CSNK2B) and acyl-CoA synthetase long chain family member 1 (ACSL1). Knockdown or chemical inhibition of CSNK2B and ACSL1 in Caco-2 cells reduced activity of the ATF6-dependent ERSE reporter gene, diminished transcription of the ATF6 target genes HSP90B1 and HSPA5 and reduced NF-κB reporter gene activation on tunicamycin stimulation. Atg16l1ΔIEC and or Xbp1ΔIEC organoids showed increased expression of ATF6 and its target genes. Inhibitors of ACSL1 or CSNK2B prevented activation of ATF6 and reduced CXCL1 and tumor necrosis factor (TNF) expression in these organoids on induction of ER stress with tunicamycin. Injection of mice with inhibitors of ACSL1 or CSNK2B significantly reduced tunicamycin-mediated intestinal inflammation and IEC death and expression of CXCL1 and TNF in Atg16l1ΔIEC mice. Purified ileal IECs from patients with CD had higher levels of ATF6, CSNK2B, and HSPA5 messenger RNAs than controls; early-passage organoids from patients with active CD show increased levels of activated ATF6 protein, incubation of these organoids with inhibitors of ACSL1 or CSNK2B reduced transcription of ATF6 target genes, including TNF. CONCLUSIONS: Ileal IECs from patients with CD have higher levels of activated ATF6, which is regulated by CSNK2B and HSPA5. ATF6 increases expression of TNF and other inflammatory cytokines in response to ER stress in these cells and in organoids from Atg16l1ΔIEC and Xbp1ΔIEC mice. Strategies to inhibit the ATF6 signaling pathway might be developed for treatment of inflammatory bowel diseases.
Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Células Epiteliales/patología , Íleon/metabolismo , Íleon/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Animales , Autofagia , Células CACO-2 , Técnicas de Cultivo de Célula , Chaperón BiP del Retículo Endoplásmico , Células HEK293 , Humanos , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Ratones , Transducción de SeñalRESUMEN
Clinical psychology intervention in paediatric gastroenterology is vital given the biopsychosocial aetiology of paediatric functional gastrointestinal disorders, and the psychological impact of chronic conditions. The aim was to assess the availability and benefit of clinical psychology in paediatric gastroenterology across the UK and Germany. A retrospective assessment of referrals (n = 936 referrals) to clinical psychology was performed at our tertiary paediatric gastroenterology centre between 2010 and 2018. The availability of clinical psychologists and outcome of psychology intervention for children with functional abdominal pain were also assessed. Access to clinical psychology across the UK and Germany was assessed using an online questionnaire. We observed a substantial rise in the number of clinical psychology referrals between 2010 and 2018. Increasing demand was not matched by sufficient increase in availability of clinical psychology, leading to longer waiting times. A major benefit of clinical psychology intervention was highlighted with 95% of patients (n = 20) reporting a significant reduction in symptoms. Of the 12 centres who responded, 11 centres have direct access to clinical psychology with a mean of 13% of patients requiring psychology referrals annually.Conclusion: Despite evidence of its benefit and increasing demand, there is insufficient access to clinical psychological services, highlighting the urgent need to address this important issue. What is known: ⢠The biopsychosocial pathophysiology of functional gastrointestinal disorders involves a disordered brain-gut interaction, which emphasizes the close link between psychological factors and altered gut function. ⢠Psychological intervention, as an adjunct to medical treatment, improves outcomes in paediatric patients with gastrointestinal (GI) disease such as functional gastrointestinal disorders and inflammatory bowel diseases What is new: ⢠There is a rising number of referrals from paediatric gastroenterology to clinical psychology in our centre which is not met by a sufficient increase in the availability of clinical psychologists. Similarly, access to clinical psychological services is lacking in several paediatric gastroenterology centres in the UK and Germany. ⢠Strategic action is required to address this important gap in the care of children suffering from GI diseases.
Asunto(s)
Gastroenterología , Enfermedades Gastrointestinales , Psicología Clínica , Niño , Enfermedades Gastrointestinales/terapia , Alemania , Humanos , Estudios RetrospectivosRESUMEN
Intestinal epithelial cells (IECs) play a key role in regulating immune responses and controlling infection. However, the direct role of IECs in restricting pathogens remains incompletely understood. Here, we provide evidence that IL-22 primed intestinal organoids derived from healthy human induced pluripotent stem cells (hIPSCs) to restrict Salmonella enterica serovar Typhimurium SL1344 infection. A combination of transcriptomics, bacterial invasion assays, and imaging suggests that IL-22-induced antimicrobial activity is driven by increased phagolysosomal fusion in IL-22-pretreated cells. The antimicrobial phenotype was absent in hIPSCs derived from a patient harboring a homozygous mutation in the IL10RB gene that inactivates the IL-22 receptor but was restored by genetically complementing the IL10RB deficiency. This study highlights a mechanism through which the IL-22 pathway facilitates the human intestinal epithelium to control microbial infection.
Asunto(s)
Células Epiteliales/inmunología , Células Madre Pluripotentes Inducidas/inmunología , Interleucinas/inmunología , Mucosa Intestinal/inmunología , Fagosomas/inmunología , Infecciones por Salmonella/inmunología , Salmonella typhimurium/inmunología , Células Epiteliales/microbiología , Células Epiteliales/patología , Humanos , Células Madre Pluripotentes Inducidas/microbiología , Células Madre Pluripotentes Inducidas/patología , Subunidad beta del Receptor de Interleucina-10/genética , Subunidad beta del Receptor de Interleucina-10/inmunología , Subunidad alfa del Receptor de Interleucina-21/genética , Subunidad alfa del Receptor de Interleucina-21/inmunología , Interleucinas/genética , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Fagosomas/genética , Fagosomas/microbiología , Fagosomas/patología , Infecciones por Salmonella/genética , Infecciones por Salmonella/patología , Salmonella typhimurium/genética , Interleucina-22RESUMEN
The incidence of chronic inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC) have significantly increased in recent decades implicating environmental effects. The developmental origin of disease concept provides a theoretical framework by which the complex interplay between environmental factors and host cells, particularly during vulnerable time periods, ultimately cause disease, such as IBD. Epigenetics has been proposed as the underlying mechanism within this concept, turning environmental triggers into stable changes of cellular function. Adding further to the complexity of IBD is the gut microbiome, which is equally responsive to the environment, and can impact host cell function, where recent findings underscore the stochastic and individualized nature of such effects. We review the microbiome literature through a novel triple environmental hit concept (priming, modulation, and trigger) of IBD pathogenesis. We propose that there are at least 3 distinct stages during an individual's lifespan where random/stochastic events driven by environmental influences are necessary for ultimately developing IBD. By this means, we speculate that microbiome-directed therapeutics carry potential for individualized prevention and dynamic treatment of IBD.
Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Epigenómica , Humanos , Enfermedades Inflamatorias del Intestino/etiologíaRESUMEN
OBJECTIVE: Human intestinal epithelial organoids (IEOs) are increasingly being recognised as a highly promising translational research tool. However, our understanding of their epigenetic molecular characteristics and behaviour in culture remains limited. DESIGN: We performed genome-wide DNA methylation and transcriptomic profiling of human IEOs derived from paediatric/adult and fetal small and large bowel as well as matching purified human gut epithelium. Furthermore, organoids were subjected to in vitro differentiation and genome editing using CRISPR/Cas9 technology. RESULTS: We discovered stable epigenetic signatures which define regional differences in gut epithelial function, including induction of segment-specific genes during cellular differentiation. Established DNA methylation profiles were independent of cellular environment since organoids retained their regional DNA methylation over prolonged culture periods. In contrast to paediatric and adult organoids, fetal gut-derived organoids showed distinct dynamic changes of DNA methylation and gene expression in culture, indicative of an in vitro maturation. By applying CRISPR/Cas9 genome editing to fetal organoids, we demonstrate that this process is partly regulated by TET1, an enzyme involved in the DNA demethylation process. Lastly, generating IEOs from a child diagnosed with gastric heterotopia revealed persistent and distinct disease-associated DNA methylation differences, highlighting the use of organoids as disease-specific research models. CONCLUSIONS: Our study demonstrates striking similarities of epigenetic signatures in mucosa-derived IEOs with matching primary epithelium. Moreover, these results suggest that intestinal stem cell-intrinsic DNA methylation patterns establish and maintain regional gut specification and are involved in early epithelial development and disease.