Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langenbecks Arch Surg ; 390(3): 243-8, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15726400

RESUMEN

BACKGROUND: This study assesses the chemotherapeutic drug gemcitabine in the human non-small cell lung cancer (NSCLC) cell line KNS62 in relation to the CD95-induced apoptotic pathway, and the role of the anti-apoptotic protein Bcl-xL in vitro and in vivo. MATERIALS AND METHODS: Apoptosis was determined by JAM assay and DAPI staining analysis. Activation of key apoptotic proteins, including caspases 3, 8 and 9 and BID, as well as cytochrome c release and mitochondrial transmembrane potential (MTP), were measured. The impact of the caspase inhibitor zVAD on gemcitabine-induced apoptosis was quantified. The in vitro results were verified in vivo in an orthotopic murine xenotransplantation model. RESULTS: Gemcitabine treatment, as well as stimulation of CD95, resulted in cleavage of effector caspase 3 as well as its substrate PARP and caspase 9, followed by DNA fragmentation. Cleavage of caspase 8 was demonstrated after CD95 activation but not after the application of gemcitabine. In KNS62-Bcl-xL clones, release of cytochrome c and loss of mitochondrial transmembrane potential were suppressed. Consequently, apoptosis after gemcitabine therapy, as well as CD95-induced apoptosis, were significantly inhibited. Caspase inhibitor zVAD only partly reversed gemcitabine-induced DNA fragmentation. In vivo, there was a significant reduction in tumour volume under gemcitabine therapy. Bcl-xL over-expressing tumours were completely resistant to gemcitabine therapy. CONCLUSIONS: In NSCLC cell line KNS62 gemcitabine activated the mitochondrial apoptotic pathway downstream of mitochondria without activation of initiator caspases. Bcl-xL over-expression induced significant resistance to gemcitabine. In vivo, the anti-apoptotic effect of Bcl-xL was more pronounced than in vitro. Gemcitabine also induced caspase-independent DNA fragmentation in KNS62 cells.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Caspasas/metabolismo , Desoxicitidina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Proteína bcl-X/metabolismo , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Apoptosis/fisiología , Caspasa 8 , Línea Celular Tumoral , Fragmentación del ADN , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Femenino , Humanos , Immunoblotting , Ratones , Ratones SCID , Trasplante Heterólogo , Receptor fas/metabolismo , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA