Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(6): 1359-1375.e13, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37023751

RESUMEN

CD4+ T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward accurate prediction and identification of CD4+ T cell epitopes. Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry. This enabled us to precisely determine the binding motifs of 88 MHC-II alleles across humans, mice, cattle, and chickens. Analysis of these binding specificities combined with X-ray crystallography refined our understanding of the molecular determinants of MHC-II motifs and revealed a widespread reverse-binding mode in HLA-DP ligands. We then developed a machine-learning framework to accurately predict binding specificities and ligands of any MHC-II allele. This tool improves and expands predictions of CD4+ T cell epitopes and enables us to discover viral and bacterial epitopes following the aforementioned reverse-binding mode.


Asunto(s)
Epítopos de Linfocito T , Péptidos , Humanos , Animales , Ratones , Bovinos , Ligandos , Unión Proteica , Pollos/metabolismo , Aprendizaje Automático , Antígenos de Histocompatibilidad Clase II , Alelos
2.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724785

RESUMEN

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Asunto(s)
Microcefalia , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células HEK293 , Serina-Treonina Quinasas TOR
3.
Nat Chem Biol ; 20(9): 1188-1198, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38811854

RESUMEN

Cysteine cathepsins are a family of proteases that are relevant therapeutic targets for the treatment of different cancers and other diseases. However, no clinically approved drugs for these proteins exist, as their systemic inhibition can induce deleterious side effects. To address this problem, we developed a modular antibody-based platform for targeted drug delivery by conjugating non-natural peptide inhibitors (NNPIs) to antibodies. NNPIs were functionalized with reactive warheads for covalent inhibition, optimized with deep saturation mutagenesis and conjugated to antibodies to enable cell-type-specific delivery. Our antibody-peptide inhibitor conjugates specifically blocked the activity of cathepsins in different cancer cells, as well as osteoclasts, and showed therapeutic efficacy in vitro and in vivo. Overall, our approach allows for the rapid design of selective cathepsin inhibitors and can be generalized to inhibit a broad class of proteases in cancer and other diseases.


Asunto(s)
Catepsinas , Péptidos , Humanos , Catepsinas/antagonistas & inhibidores , Catepsinas/metabolismo , Péptidos/química , Péptidos/farmacología , Animales , Ratones , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Inmunoconjugados/farmacología , Inmunoconjugados/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/química
4.
Nucleic Acids Res ; 52(W1): W324-W332, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38686803

RESUMEN

Drug discovery aims to identify potential therapeutic compounds capable of modulating the activity of specific biological targets. Molecular docking can efficiently support this process by predicting binding interactions between small molecules and macromolecular targets and potentially accelerating screening campaigns. SwissDock is a computational tool released in 2011 as part of the SwissDrugDesign project, providing a free web-based service for small-molecule docking after automatized preparation of ligands and targets. Here, we present the latest version of SwissDock, in which EADock DSS has been replaced by two state-of-the-art docking programs, i.e. Attracting Cavities and AutoDock Vina. AutoDock Vina provides faster docking predictions, while Attracting Cavities offers more accurate results. Ligands can be imported in various ways, including as files, SMILES notation or molecular sketches. Targets can be imported as PDB files or identified by their PDB ID. In addition, advanced search options are available both for ligands and targets, giving users automatized access to widely-used databases. The web interface has been completely redesigned for interactive submission and analysis of docking results. Moreover, we developed a user-friendly command-line access which, in addition to all options of the web site, also enables covalent ligand docking with Attracting Cavities. The new version of SwissDock is freely available at https://www.swissdock.ch/.


Asunto(s)
Simulación del Acoplamiento Molecular , Programas Informáticos , Ligandos , Descubrimiento de Drogas/métodos , Interfaz Usuario-Computador , Internet , Proteínas/química , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Unión Proteica , Sitios de Unión
5.
Proc Natl Acad Sci U S A ; 120(21): e2214936120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192162

RESUMEN

Influenza A virus (IAV) enters host cells mostly through clathrin-dependent receptor-mediated endocytosis. A single bona fide entry receptor protein supporting this entry mechanism remains elusive. Here we performed proximity ligation of biotin to host cell surface proteins in the vicinity of attached trimeric hemagglutinin-HRP and characterized biotinylated targets using mass spectrometry. This approach identified transferrin receptor 1 (TfR1) as a candidate entry protein. Genetic gain-of-function and loss-of-function experiments, as well as in vitro and in vivo chemical inhibition, confirmed the functional involvement of TfR1 in IAV entry. Recycling deficient mutants of TfR1 do not support entry, indicating that TfR1 recycling is essential for this function. The binding of virions to TfR1 via sialic acids confirmed its role as a directly acting entry factor, but unexpectedly even headless TfR1 promoted IAV particle uptake in trans. TIRF microscopy localized the entering virus-like particles in the vicinity of TfR1. Our data identify TfR1 recycling as a revolving door mechanism exploited by IAV to enter host cells.


Asunto(s)
Virus de la Influenza A , Transferrina , Virus de la Influenza A/fisiología , Internalización del Virus , Endocitosis/fisiología , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo
6.
J Cell Sci ; 135(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35673994

RESUMEN

In formin-family proteins, actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, with reaction rates that vary by at least 20-fold between formins. Each cell expresses distinct formins that assemble one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates in vivo. Fus1 assembles the actin fusion focus, necessary for gamete fusion to form the zygote during sexual reproduction. By constructing chimeric formins with combinations of FH1 and FH2 domains previously characterized in vitro, we establish that changes in formin nucleation and elongation rates have direct consequences on fusion focus architecture, and that Fus1 native high nucleation and low elongation rates are optimal for fusion focus assembly. We further describe a point mutant in Fus1 FH2 that preserves native nucleation and elongation rates in vitro but alters function in vivo, indicating an additional FH2 domain property. Thus, rates of actin assembly are tailored for assembly of specific actin structures.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Forminas , Proteínas de Microfilamentos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34479996

RESUMEN

Excessive production of viral glycoproteins during infections poses a tremendous stress potential on the endoplasmic reticulum (ER) protein folding machinery of the host cell. The host cell balances this by providing more ER resident chaperones and reducing translation. For viruses, this unfolded protein response (UPR) offers the potential to fold more glycoproteins. We postulated that viruses could have developed means to limit the inevitable ER stress to a beneficial level for viral replication. Using a relevant human pathogen, influenza A virus (IAV), we first established the determinant for ER stress and UPR induction during infection. In contrast to a panel of previous reports, we identified neuraminidase to be the determinant for ER stress induction, and not hemagglutinin. IAV relieves ER stress by expression of its nonstructural protein 1 (NS1). NS1 interferes with the host messenger RNA processing factor CPSF30 and suppresses ER stress response factors, such as XBP1. In vivo viral replication is increased when NS1 antagonizes ER stress induction. Our results reveal how IAV optimizes glycoprotein expression by balancing folding capacity.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Virus de la Influenza A/genética , Neuraminidasa/metabolismo , Células A549 , Retículo Endoplásmico/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno/fisiología , Humanos , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología , Proteínas no Estructurales Virales/genética , Replicación Viral/genética
8.
Genes Dev ; 30(8): 960-72, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27056667

RESUMEN

In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc),O-linked-GlcNAc transferase (OGT) catalyzes Ser/ThrO-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase-protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-translational modification within one enzyme. Although occurring within the same active site, we show here that glycosylation and proteolysis occur through separable mechanisms. OGT consists of tetratricopeptide repeat (TPR) and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and proteolysis. Nevertheless, a specific TPR domain contact with the HCF-1 substrate is critical for proteolysis but not Ser/Thr glycosylation. In contrast, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation are irrelevant for proteolysis. Thus, from a dual glycosyltransferase-protease, essentially single-activity enzymes can be engineered both in vitro and in vivo. Curiously, whereas OGT-mediated HCF-1 proteolysis is limited to vertebrate species, invertebrate OGTs can cleave human HCF-1. We present a model for the evolution of HCF-1 proteolysis by OGT.


Asunto(s)
Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteolisis , Secuencias de Aminoácidos , Animales , Dominio Catalítico , Simulación por Computador , Evolución Molecular , Humanos , Invertebrados/enzimología , Modelos Moleculares , Mutación , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína
9.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928223

RESUMEN

Mutations affecting codon 172 of the isocitrate dehydrogenase 2 (IDH2) gene define a subgroup of sinonasal undifferentiated carcinomas (SNUCs) with a relatively favorable prognosis and a globally hypermethylated phenotype. They are also recurrent (along with IDH1 mutations) in gliomas, acute myeloid leukemia, and intrahepatic cholangiocarcinoma. Commonly reported mutations, all associated with aberrant IDH2 enzymatic activity, include R172K, R172S, R172T, R172G, and R172M. We present a case of SNUC with a never-before-described IDH2 mutation, R172A. Our report compares the methylation pattern of our sample to other cases from the Gene Expression Omnibus database. Hierarchical clustering suggests a strong association between our sample and other IDH-mutant SNUCs and a clear distinction between sinonasal normal tissues and tumors. Principal component analysis (PCA), using 100 principal components explaining 94.5% of the variance, showed the position of our sample to be within 1.02 standard deviation of the other IDH-mutant SNUCs. A molecular modeling analysis of the IDH2 R172A versus other R172 variants provides a structural explanation to how they affect the protein active site. Our findings thus suggest that the R172A mutation in IDH2 confers a gain of function similar to other R172 mutations in IDH2, resulting in a similar hypermethylated profile.


Asunto(s)
Carcinoma , Metilación de ADN , Isocitrato Deshidrogenasa , Neoplasias del Seno Maxilar , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Metilación de ADN/genética , Carcinoma/genética , Carcinoma/patología , Neoplasias del Seno Maxilar/genética , Neoplasias del Seno Maxilar/patología , Masculino , Persona de Mediana Edad , Femenino , Anciano
10.
Hum Mol Genet ; 31(1): 1-9, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33693784

RESUMEN

Knobloch syndrome is an autosomal recessive phenotype mainly characterized by retinal detachment and encephalocele caused by biallelic pathogenic variants in the COL18A1 gene. However, there are patients clinically diagnosed as Knobloch syndrome with unknown molecular etiology not linked to COL18A1. We studied an historical pedigree (published in 1998) designated as KNO2 (Knobloch type 2 syndrome with intellectual disability, autistic behavior, retinal degeneration, encephalocele). Whole exome sequencing of the two affected siblings and the normal parents resulted in the identification of a PAK2 non-synonymous substitution p.(Glu435Lys) as a causative variant. The variant was monoallelic and apparently de novo in both siblings indicating a likely germ-line mosaicism in one of the parents; the mosaicism, however, could not be observed after deep sequencing of blood parental DNA. PAK2 encodes a member of a small group of serine/threonine kinases; these P21-activating kinases (PAKs) are essential in signal transduction and cellular regulation (cytoskeletal dynamics, cell motility, death and survival signaling and cell cycle progression). Structural analysis of the PAK2 p.(Glu435Lys) variant that is located in the kinase domain of the protein predicts a possible compromise in the kinase activity. Functional analysis of the p.(Glu435Lys) PAK2 variant in transfected HEK293T cells results in a partial loss of the kinase activity. PAK2 has been previously suggested as an autism-related gene. Our results show that PAK2-induced phenotypic spectrum is broad and not fully understood. We conclude that the KNO2 syndrome in the studied family is dominant and caused by a deleterious variant in the PAK2 gene.


Asunto(s)
Degeneración Retiniana , Desprendimiento de Retina , Encefalocele/diagnóstico , Encefalocele/genética , Encefalocele/patología , Células HEK293 , Humanos , Mutación , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Desprendimiento de Retina/congénito , Desprendimiento de Retina/genética , Quinasas p21 Activadas/genética
11.
Brief Bioinform ; 22(2): 742-768, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33348379

RESUMEN

SARS-CoV-2 is the causative agent of COVID-19, the ongoing global pandemic. It has posed a worldwide challenge to human health as no effective treatment is currently available to combat the disease. Its severity has led to unprecedented collaborative initiatives for therapeutic solutions against COVID-19. Studies resorting to structure-based drug design for COVID-19 are plethoric and show good promise. Structural biology provides key insights into 3D structures, critical residues/mutations in SARS-CoV-2 proteins, implicated in infectivity, molecular recognition and susceptibility to a broad range of host species. The detailed understanding of viral proteins and their complexes with host receptors and candidate epitope/lead compounds is the key to developing a structure-guided therapeutic design. Since the discovery of SARS-CoV-2, several structures of its proteins have been determined experimentally at an unprecedented speed and deposited in the Protein Data Bank. Further, specialized structural bioinformatics tools and resources have been developed for theoretical models, data on protein dynamics from computer simulations, impact of variants/mutations and molecular therapeutics. Here, we provide an overview of ongoing efforts on developing structural bioinformatics tools and resources for COVID-19 research. We also discuss the impact of these resources and structure-based studies, to understand various aspects of SARS-CoV-2 infection and therapeutic development. These include (i) understanding differences between SARS-CoV-2 and SARS-CoV, leading to increased infectivity of SARS-CoV-2, (ii) deciphering key residues in the SARS-CoV-2 involved in receptor-antibody recognition, (iii) analysis of variants in host proteins that affect host susceptibility to infection and (iv) analyses facilitating structure-based drug and vaccine design against SARS-CoV-2.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Biología Computacional , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , Humanos , Conformación Proteica , Proteínas Virales/química
12.
J Chem Inf Model ; 63(24): 7847-7859, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38049143

RESUMEN

Due to their various advantages, interest in the development of covalent drugs has been renewed in the past few years. It is therefore important to accurately describe and predict their interactions with biological targets by computer-aided drug design tools such as docking algorithms. Here, we report a covalent docking procedure for our in-house docking code Attracting Cavities (AC), which mimics the two-step mechanism of covalent ligand binding. Ligand binding to the protein cavity is driven by nonbonded interactions, followed by the formation of a covalent bond between the ligand and the protein through a chemical reaction. To test the performance of this method, we developed a diverse, high-quality, openly accessible re-docking benchmark set of 95 covalent complexes bound by 8 chemical reactions to 5 different reactive amino acids. Combination with structures from previous studies resulted in a set of 304 complexes, on which AC obtained a success rate (rmsd ≤ 2 Å) of 78%, outperforming two state-of-the-art covalent docking codes, genetic optimization for ligand docking (GOLD (66%)) and AutoDock (AD (35%)). Using a more stringent success criterion (rmsd ≤ 1.5 Å), AC reached a success rate of 71 vs 55% for GOLD and 26% for AD. We additionally assessed the cross-docking performance of AC on a set of 76 covalent complexes of the SARS-CoV-2 main protease. On this challenging test set of mainly small and highly solvent-exposed ligands, AC yielded success rates of 58 and 28% for re-docking and cross-docking, respectively, compared to 45 and 17% for GOLD.


Asunto(s)
Algoritmos , Proteínas , Ligandos , Simulación del Acoplamiento Molecular , Proteínas/química , Diseño de Fármacos , Unión Proteica
13.
J Chem Inf Model ; 63(12): 3925-3940, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37285197

RESUMEN

Molecular docking is a computational approach for predicting the most probable position of a ligand in the binding site of a target macromolecule. Our docking algorithm Attracting Cavities (AC) has been shown to compare favorably to other widely used docking algorithms [Zoete, V.; et al. J. Comput. Chem. 2016, 37, 437]. Here we describe several improvements of AC, making the sampling more robust and providing more flexibility for either fast or high-accuracy docking. We benchmark the performance of AC 2.0 using the 285 complexes of the PDBbind Core set, version 2016. For redocking from randomized ligand conformations, AC 2.0 reaches a success rate of 73.3%, compared to 63.9% for GOLD and 58.0% for AutoDock Vina. Due to its force-field-based scoring function and its thorough sampling procedure, AC 2.0 also performs well for blind docking on the entire receptor surface. The accuracy of its scoring function allows for the detection of problematic experimental structures in the benchmark set. For cross-docking, the AC 2.0 success rate is about 30% lower than for redocking (42.5%), similar to GOLD (42.8%) and better than AutoDock Vina (33.1%), and it can be improved by an informed choice of flexible protein residues. For selected targets with a high success rate in cross-docking, AC 2.0 also achieves good enrichment factors in virtual screening.


Asunto(s)
Algoritmos , Proteínas , Simulación del Acoplamiento Molecular , Ligandos , Proteínas/química , Sitios de Unión , Unión Proteica
14.
J Chem Inf Model ; 63(21): 6469-6475, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37853543

RESUMEN

Most steps of drug discovery are now routinely supported and accelerated by computer-aided drug design tools. Among them, structure-based approaches use the three-dimensional structure of the targeted biomacromolecule as a major source of information. When it comes to calculating the interactions of small molecules with proteins using the equations of molecular mechanics, topologies, atom typing, and force field parameters are required. However, generating parameters for small molecules remains challenging due to the large number of existing chemical groups. The SwissParam web tool was first released in 2011 with the aim of generating parameters and topologies for small molecules based on the Merck molecular force field (MMFF) while being compatible with the CHARMM22/27 force field. Here, we present an updated version of SwissParam, providing various new features, including the possibility to setup covalent ligands. Molecules can now be imported from different file formats or via a molecular sketcher. The MMFF-based approach has been updated to provide parameters and topologies compatible with the CHARMM36 force field. An option was added to generate small molecule parametrizations following the CHARMM General Force Field via the multipurpose atom-typer for CHARMM (MATCH) approach. Additionally, SwissParam now generates information on probable alternative tautomers and protonation states of the query molecule so that the user can consider all microspecies relevant to its compound. The new version of SwissParam is freely available at www.swissparam.ch and can also be accessed through a newly implemented command-line interface.


Asunto(s)
Diseño de Fármacos , Simulación de Dinámica Molecular , Descubrimiento de Drogas , Proteínas/química , Internet
15.
Proc Natl Acad Sci U S A ; 117(28): 16292-16301, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601208

RESUMEN

Notch pathway signaling is implicated in several human cancers. Aberrant activation and mutations of Notch signaling components are linked to tumor initiation, maintenance, and resistance to cancer therapy. Several strategies, such as monoclonal antibodies against Notch ligands and receptors, as well as small-molecule γ-secretase inhibitors (GSIs), have been developed to interfere with Notch receptor activation at proximal points in the pathway. However, the use of drug-like small molecules to target the downstream mediators of Notch signaling, the Notch transcription activation complex, remains largely unexplored. Here, we report the discovery of an orally active small-molecule inhibitor (termed CB-103) of the Notch transcription activation complex. We show that CB-103 inhibits Notch signaling in primary human T cell acute lymphoblastic leukemia and other Notch-dependent human tumor cell lines, and concomitantly induces cell cycle arrest and apoptosis, thereby impairing proliferation, including in GSI-resistant human tumor cell lines with chromosomal translocations and rearrangements in Notch genes. CB-103 produces Notch loss-of-function phenotypes in flies and mice and inhibits the growth of human breast cancer and leukemia xenografts, notably without causing the dose-limiting intestinal toxicity associated with other Notch inhibitors. Thus, we describe a pharmacological strategy that interferes with Notch signaling by disrupting the Notch transcription complex and shows therapeutic potential for treating Notch-driven cancers.


Asunto(s)
Receptores Notch/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Activación Transcripcional/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Drosophila , Resistencia a Antineoplásicos/efectos de los fármacos , Células HeLa , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/química , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Ratones , Mutación , Fenotipo , Multimerización de Proteína , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico
16.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901951

RESUMEN

The development of targeted therapies for non-BRAF p.Val600-mutant melanomas remains a challenge. Triple wildtype (TWT) melanomas that lack mutations in BRAF, NRAS, or NF1 form 10% of human melanomas and are heterogeneous in their genomic drivers. MAP2K1 mutations are enriched in BRAF-mutant melanoma and function as an innate or adaptive resistance mechanism to BRAF inhibition. Here we report the case of a patient with TWT melanoma with a bona fide MAP2K1 mutation without any BRAF mutations. We performed a structural analysis to validate that the MEK inhibitor trametinib could block this mutation. Although the patient initially responded to trametinib, he eventually progressed. The presence of a CDKN2A deletion prompted us to combine a CDK4/6 inhibitor, palbociclib, with trametinib but without clinical benefit. Genomic analysis at progression showed multiple novel copy number alterations. Our case illustrates the challenges of combining MEK1 and CDK4/6 inhibitors in case of resistance to MEK inhibitor monotherapy.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Masculino , Humanos , Neoplasias Cutáneas/genética , Melanoma/genética , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Proto-Oncogénicas B-raf/genética , Mutación , MAP Quinasa Quinasa 1/genética
17.
Hum Mol Genet ; 29(7): 1132-1143, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32129449

RESUMEN

The molecular cause of the majority of rare autosomal recessive disorders remains unknown. Consanguinity due to extensive homozygosity unravels many recessive phenotypes and facilitates the detection of novel gene-disease links. Here, we report two siblings with phenotypic signs, including intellectual disability (ID), developmental delay and microcephaly from a Pakistani consanguineous family in which we have identified homozygosity for p(Tyr103His) in the PSMB1 gene (Genbank NM_002793) that segregated with the disease phenotype. PSMB1 encodes a ß-type proteasome subunit (i.e. ß6). Modeling of the p(Tyr103His) variant indicates that this variant weakens the interactions between PSMB1/ß6 and PSMA5/α5 proteasome subunits and thus destabilizes the 20S proteasome complex. Biochemical experiments in human SHSY5Y cells revealed that the p(Tyr103His) variant affects both the processing of PSMB1/ß6 and its incorporation into proteasome, thus impairing proteasome activity. CRISPR/Cas9 mutagenesis or morpholino knock-down of the single psmb1 zebrafish orthologue resulted in microcephaly, microphthalmia and reduced brain size. Genetic evidence in the family and functional experiments in human cells and zebrafish indicates that PSMB1/ß6 pathogenic variants are the cause of a recessive disease with ID, microcephaly and developmental delay due to abnormal proteasome assembly.


Asunto(s)
Enanismo/genética , Microcefalia/genética , Complejo de la Endopetidasa Proteasomal/genética , Alelos , Animales , Niño , Consanguinidad , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Enanismo/complicaciones , Femenino , Homocigoto , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Microcefalia/complicaciones , Microcefalia/patología , Modelos Moleculares , Linaje , Fenotipo , Pez Cebra/genética
18.
Am J Hum Genet ; 104(6): 1073-1087, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31079899

RESUMEN

Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.2:c.607+1G>A). We report two additional individuals who have similar neurodevelopmental deficits and craniofacial features and harbor deleterious variants; one individual bears a c.740A>G (p.Tyr247Cys) change in trans with a 374 kb deletion encompassing DYNC1I2, and an unrelated individual harbors the compound-heterozygous variants c.868C>T (p.Gln290∗) and c.740A>G (p.Tyr247Cys). Zebrafish larvae subjected to CRISPR-Cas9 gene disruption or transient suppression of dync1i2a displayed significantly altered craniofacial patterning with concomitant reduction in head size. We monitored cell death and cell cycle progression in dync1i2a zebrafish models and observed significantly increased apoptosis, likely due to prolonged mitosis caused by abnormal spindle morphology, and this finding offers initial insights into the cellular basis of microcephaly. Additionally, complementation studies in zebrafish demonstrate that p.Tyr247Cys attenuates gene function, consistent with protein structural analysis. Our genetic and functional data indicate that DYNC1I2 dysfunction probably causes an autosomal-recessive microcephaly syndrome and highlight further the critical roles of the dynein-1 complex in neurodevelopment.


Asunto(s)
Anomalías Craneofaciales/etiología , Dineínas/genética , Discapacidad Intelectual/etiología , Malformaciones Arteriovenosas Intracraneales/etiología , Microcefalia/etiología , Mutación , Pez Cebra/crecimiento & desarrollo , Adulto , Alelos , Secuencia de Aminoácidos , Animales , Preescolar , Anomalías Craneofaciales/patología , Dineínas/química , Dineínas/metabolismo , Exoma , Femenino , Homocigoto , Humanos , Lactante , Discapacidad Intelectual/patología , Malformaciones Arteriovenosas Intracraneales/patología , Masculino , Microcefalia/patología , Linaje , Fenotipo , Conformación Proteica , Homología de Secuencia , Secuenciación del Exoma , Adulto Joven , Pez Cebra/genética , Pez Cebra/metabolismo
19.
Genet Med ; 24(7): 1583-1591, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35499524

RESUMEN

PURPOSE: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher. METHODS: Exome sequencing was performed in all individuals. CTR9 variants were assessed through 3-dimensional modeling of the activated human transcription complex Pol II-DSIF-PAF-SPT6 and the PAF1/CTR9 complex. H3K4/H3K36 methylation analysis, mitophagy assessment based on tetramethylrhodamine ethyl ester perchlorate immunofluorescence, and RNA-sequencing in skin fibroblasts from 4 patients was performed. RESULTS: Common clinical findings were variable degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, and autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. For 11 CTR9 variants, de novo occurrence was shown. Three-dimensional modeling predicted a likely disruptive effect of the variants on local CTR9 structure and protein interaction. Additional studies in fibroblasts did not unveil the downstream functional consequences of the identified variants. CONCLUSION: We describe a neurodevelopmental disorder caused by (mainly) de novo variants in CTR9, likely affecting PAF1C function.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Fosfoproteínas , Factores de Transcripción , Regulación de la Expresión Génica , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Fosfoproteínas/genética , Factores de Transcripción/genética
20.
J Enzyme Inhib Med Chem ; 37(1): 1773-1811, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35758198

RESUMEN

The haem enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the rate-limiting step in the kynurenine pathway of tryptophan metabolism and plays an essential role in immunity, neuronal function, and ageing. Expression of IDO1 in cancer cells results in the suppression of an immune response, and therefore IDO1 inhibitors have been developed for use in anti-cancer immunotherapy. Here, we report an extension of our previously described highly efficient haem-binding 1,2,3-triazole and 1,2,4-triazole inhibitor series, the best compound having both enzymatic and cellular IC50 values of 34 nM. We provide enzymatic inhibition data for almost 100 new compounds and X-ray diffraction data for one compound in complex with IDO1. Structural and computational studies explain the dramatic drop in activity upon extension to pocket B, which has been observed in diverse haem-binding inhibitor scaffolds. Our data provides important insights for future IDO1 inhibitor design.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Triazoles , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hemo , Triazoles/química , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA