Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Nutr ; 11: 1362529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577158

RESUMEN

Sweet-tasting proteins (SPs) are proteins of plant origin initially isolated from tropical fruits. They are thousands of times sweeter than sucrose and most artificial sweeteners. SPs are a class of proteins capable of causing a sweet taste sensation in humans when interacting with the T1R2/T1R3 receptor. SP thaumatin has already been introduced in the food industry in some countries. Other SPs, such as monellin and brazzein, are promising products. An important stage in researching SPs, in addition to confirming the absence of toxicity, mutagenicity, oncogenicity, and allergenic effects, is studying their influence on gut microbiota. In this paper we describe changes in the composition of rat gut microbiota after six months of consuming one of two recombinant SPs-brazzein or monellin. A full length 16S gene sequencing method was used for DNA library barcoding. The MaAsLin2 analysis results showed noticeable fluctuations in the relative abundances of Anaerocella delicata in brazzein-fed rat microbiota, and of Anaerutruncus rubiinfantis in monellin-fed rat microbiota, which, however, did not exceed the standard deviation. The sucrose-fed group was associated with an increase in the relative abundance of Faecalibaculum rodentium, which may contribute to obesity. Overall, prolonged consumption of the sweet proteins brazzein and monellin did not significantly change rat microbiota and did not result in the appearance of opportunistic microbiota. This provides additional evidence for the safety of these potential sweeteners.

2.
Microbiol Spectr ; : e0063624, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39345205

RESUMEN

Inflammatory bowel diseases are characterized by chronic intestinal inflammation and alterations in the gut microbiota composition. Bacteroides fragilis, which secretes outer membrane vesicles (OMVs) with polysaccharide A (PSA), can moderate the inflammatory response and possibly alter the microbiota composition. In this study, we created a murine model of chronic sodium dextran sulfate (DSS)-induced intestinal colitis and treated it with B. fragilis OMVs. We monitored the efficiency of OMV therapy by determining the disease activity index (DAI) and performing histological examination (HE) of the intestine before and after vesicle exposure. We also analyzed the microbiota composition using 16S rRNA gene sequencing. Finally, we evaluated the volatile compound composition in the animals' stools by HS-GC/MS to assess the functional activity of the microbiota. We observed more effective intestinal repair after OMV treatment according to the DAI and HE. A metabolomic study also revealed changes in the functional activity of the microbiota, with a predominance of phenol and pentanoic acid in the control group compared to the group treated with DSS and the group treated with OMVs (DSS OMVs). We also observed a positive correlation of these metabolites with Saccharibacteria and Acetivibrio in the control group, whereas in the DSS group, there was a negative correlation of phenol and pentanoic acid with Lactococcus and Romboutsia. According to the metabolome and sequencing data, the microbiota composition of the DSS-treated OMV group was intermediate between that of the control and DSS groups. OMVs not only have an anti-inflammatory effect but also contribute to the recovery of the microbiota composition.IMPORTANCEBacteroides fragilis vesicles contain superficially localized polysaccharide A (PSA), which has unique immune-modulating properties. Isolated PSA can prevent chemically induced colitis in a murine model. Outer membrane vesicles (OMVs) also contain digestive enzymes and volatile metabolites that can complement the anti-inflammatory properties of PSA. OMVs showed high therapeutic activity against sodium dextran sulfate-induced colitis, as confirmed by histological assays. 16S rRNA sequencing of fecal samples from different inflammatory stages, supplemented with comprehensive metabolome analysis of volatile compounds conducted by HS-GC/MS, revealed structural and functional alterations in the microbiota composition under the influence of OMVs. Correlation analysis of the OMV-treated and untreated experimental animal groups revealed associations of phenol and pentanoic acid with Lactococcus, Romboutsia, Saccharibacteria, and Acetivibrio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA