Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(35): 19729-19739, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524307

RESUMEN

The fundamental understanding of glucose conversion to 5-ethoxymethylfurfural (EMF) and ethyl levulinate (EL) (value-added chemicals from biomass) in ethanol solution catalyzed by a Brønsted acid is limited at present. Consequently, here, the reaction pathways and mechanism of glucose conversion to EMF and EL catalyzed by a Brønsted acid were studied, using an experimental method and quantum chemical calculations at the B3LYP/6-31G(D) and B2PLYPD3/Def2TZVP level under a polarized continuum model (PCM-SMD). By further verification through GC/MS tests, the mechanism and reaction pathways of glucose conversion in ethanol solution catalyzed by a Brønsted acid were revealed, showing that glucose is catalyzed by proton and ethanol, and ethanol plays a bridging role in the process of proton transfer. There are three main reaction pathways: through glucose and ethyl glucoside (G/EG), through fructose, 5-hydroxymethylfurfural (HMF), levulinic acid (LA), and EL (G/F/H/L/EL), and through fructose, HMF, EMF, and EL (G/F/H/E/EL). The G/F/H/E/EL pathway with an energy barrier of 20.8 kcal mol-1 is considered as the thermodynamic and kinetics primary way, in which the reaction rate of this is highly related to the proton transfer in the isomerization of glucose to fructose. The intermediate HMF was formed from O5 via a ring-opening reaction and by the dehydration of fructose, and was further converted to the main product of EMF by etherification or by LA through hydrolysis. EMF and LA are both unstable, and can partially be transformed to EL. This study is beneficial for the insights aiding the understanding of the process and products controlling biomass conversion in ethanol solution.


Asunto(s)
Etanol/química , Furaldehído/análogos & derivados , Glucosa/química , Modelos Moleculares , Ácidos Sulfúricos/química , Biocombustibles , Catálisis , Teoría Funcional de la Densidad , Furaldehído/química , Ácidos Levulínicos/química , Termodinámica
2.
Bioresour Technol ; 364: 128068, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36202280

RESUMEN

Ionic liquids (ILs) have been considered as promising alternatives to traditional reagent for lignocellulosic biomass pretreatment because of their tunable physicochemical and "green" properties. In the study, the influence of 1-Butyl-3-methylimidazolium acetate ([Bmim]acetate) pretreatment of giant reed on H2 yield improvement via photo-fermentation (PF) was evaluated. Under the optimal pretreatment conditions (6 g/L [Bmim]acetate at 70 °C for 4 h), the delignification of giant reed was up to 26.7 %. In addition, the sugar yield (9.5 g/L) and hydrogen yield (72.3 mL/g TS) from giant reed were enhanced by 1.7-fold and 61.7 % over those of untreated giant reed, respectively. Moreover, ternary analysis showed that retention time had the strongest effect on delignification, sugar yield and hydrogen yield of giant reed compared to pretreatment temperature and [Bmim]acetate loading. These experimental results indicated that [Bmim]acetate pretreatment of giant reed is an effective approach to enhance the hydrogen yield via PF.

3.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 12): o3506, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22199976

RESUMEN

In the title compound, C(15)H(10)N(2)OS, prepared by the reaction of 2-iodo-5-methyl-benzoyl chloride with 2-mercaptobenzimidazole, the four-membered fused-ring system is essentially planar [maximum deviation from the least-squares plane = 0.137 (6) Å]. The crystal packing is stabilized by weak inter-molecular π-π inter-actions [minimum ring centroid separation = 3.536 (4) Å] and weak C-H⋯π inter-actions.

4.
Appl Spectrosc ; 72(6): 913-920, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29512412

RESUMEN

Paper aging and degradation are growing concerns for those who are responsible for the conservation of documents, archives, and libraries. In this study, the paper aging was investigated using laser-induced fluorescence spectroscopy (LIFS), where the fluorescence properties of 47 paper samples with different ages were explored. The paper exhibits fluorescence in the blue-green spectral region with two peaks at about 448 nm and 480 nm under the excitation of 405 nm laser. Both fluorescence peaks changed in absolute intensities and thus the ratio of peak intensities was also influenced with the increasing ages. By applying principal component analysis (PCA) and k-means clustering algorithm, all 47 paper samples were classified into nine groups based on the differences in paper age. Then the first-derivative fluorescence spectral curves were proposed to figure out the relationship between the spectral characteristic and the paper age, and two quantitative models were established based on the changes of first-derivative spectral peak at 443 nm, where one is an exponential fitting curve with an R-squared value of 0.99 and another is a linear fitting curve with an R-squared value of 0.88. The results demonstrated that the combination of fluorescence spectroscopy and PCA can be used for the classification of paper samples with different ages. Moreover, the first-derivative fluorescence spectral curves can be used to quantitatively evaluate the age-related changes of paper samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA