Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Anal Chem ; 96(4): 1700-1706, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38235596

RESUMEN

The commercialized electrochemiluminescence (ECL) immunoassay is carried out by holding luminophore Ru(bpy)32+ at a given potential. Designing an electrochemiluminophore with a narrow triggering potential window is strongly anticipated to decrease the electrochemical cross-talk and improve the flux of the commercialized ECL immunoassay in a potential-resolved way. Herein, L-penicillamine-capped silver nanoclusters (LPA-AgNCs) are facilely synthesized and utilized as tags to perform the ECL immunoassay with a sole and narrow triggering potential window of 0.24 V by employing hydrazine (N2H4) as a coreactant. The maximum ECL emission of the LPA-AgNCs/N2H4 system is located ca. +1.27 V. Upon immobilizing LPA-AgNCs onto the electrode surface via forming a sandwich immunocomplex, the ECL of LPA-AgNCs/N2H4 can be utilized to sensitively and selectively determine human carcinoembryonic antigen from 0.5 to 1000 pg/mL with a low limit of detection of 0.1 pg/mL (S/N = 3). This work might open a way to screen electrochemiluminophores for the multiple ECL immunoassay in a potential-resolved way.


Asunto(s)
Técnicas Biosensibles , Plata , Humanos , Técnicas Electroquímicas , Pruebas Inmunológicas , Inmunoensayo , Mediciones Luminiscentes , Límite de Detección
2.
Anal Chem ; 96(19): 7643-7650, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38708712

RESUMEN

Chemiluminescence (CL), especially commercialized CL immunoassay (CLIA), is normally performed within the eye-visible region of the spectrum by exploiting the electronic-transition-related emission of the molecule luminophore. Herein, dual-stabilizers-capped CdTe nanocrystals (NCs) is employed as a model of nanoparticulated luminophore to finely tune the CL color with superior color purity. Initialized by oxidizing the CdTe NCs with potassium periodate (KIO4), intermediates of the reactive oxygen species (ROS) tend to charge CdTe NCs in both series-connection and parallel-connection routes and dominate the charge-transfer CL of CdTe NCs. The CdTe NCs/KIO4 system can exhibit color-tunable CL with the maximum emission wavelength shifted from 694 nm to 801 nm, and the red-shift span is over 100 nm. Both PL and CL of each of the CdTe NCs are bandgap-engineered; the change in the NCs surface state via CL reaction enables CL of each of the CdTe NCs to be red-shifted for ∼20 nm to PL, while the change in the NCs surface state via labeling CdTe NCs to secondary-antibody (Ab2) enables CL of the CdTe NCs-Ab2 conjugates to be red-shifted for another ∼20 nm to bare CdTe NCs. The CL of CdTe753-Ab2/KIO4 is ∼791 nm, which can perform near-infrared CL immunoassay and semi-automatically determined procalcitonin (PCT) on commercialized in vitro diagnosis (IVD) instruments.


Asunto(s)
Compuestos de Cadmio , Mediciones Luminiscentes , Nanopartículas , Telurio , Telurio/química , Inmunoensayo/métodos , Compuestos de Cadmio/química , Nanopartículas/química , Color , Luminiscencia , Automatización , Humanos
3.
Anal Chem ; 96(17): 6652-6658, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38630909

RESUMEN

A low-triggering potential and a narrow-potential window are anticipated to decrease the electrochemical interference and cross talk of electrochemiluminescence (ECL). Herein, by exploiting the low oxidative potential (0.82 V vs Ag/AgCl) of dihydrolipoic acid-capped sliver nanoclusters (DHLA-AgNCs), a coreactant ECL system of DHLA-AgNCs/hydrazine (N2H4) is proposed to achieve efficient and oxidative-reduction ECL with a low-triggering potential of 0.82 V (vs Ag/AgCl) and a narrow-potential window of 0.22 V. The low-triggering-potential and narrow-potential-window nature of ECL can be primarily preserved upon labeling DHLA-AgNCs to probe DNA and immobilizing DHLA-AgNCs onto the Au surface via sandwiched hybridization, which eventually enables a selective ECL strategy for the gene assay at +0.82 V. This gene assay strategy can sensitively determine the gene of human papillomavirus from 10 to 1000 pM with a low limit of detection of 5 pM (S/N = 3) and would open a way to improve the applied ECL bioassay.


Asunto(s)
Técnicas Electroquímicas , Mediciones Luminiscentes , Nanopartículas del Metal , Plata , Ácido Tióctico/análogos & derivados , Plata/química , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Mediciones Luminiscentes/métodos , Humanos , Ácido Tióctico/química , Técnicas Biosensibles/métodos , ADN Viral/análisis , ADN Viral/genética , Límite de Detección
4.
Anal Chem ; 95(20): 8070-8076, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37167106

RESUMEN

Optical single molecule detection is normally achieved via amplifying the total emission of photons of luminophores and is strongly anticipated to extend the commercialized application of chemiluminescence (CL). To overcome the limited CL photons of molecule luminophores, herein, a nanocrystal (NC) luminophore self-amplified strategy is proposed to repetitively excite CL luminophores for amplifying the total CL photons per luminophore, which can be exploited to perform CL immunoassays (CLIAs) toward single molecule detection via employing KMnO4 as the CL triggering agent and the dual-stabilizer-capped CdTe NCs as the CL luminophore. KMnO4 can oxidize the S element from each stabilizer of mercaptopropionic acid (MPA) and release enough energy to excite the CdTe core for flash CL. The substantial MPA around each CdTe core enables every CdTe luminophore to be repetitively excited and give off amplified total CL photons in a self-enhanced way. The CL of CdTe NCs/KMnO4 can release all photons rapidly, and the collection of all these photons can be utilized to determine the model analyte of thyroid-stimulating hormone antigen (TSH) with a limit of detection of 5 ag/mL (S/N = 3), which is corresponding to about 2-4 TSH molecules in a 20 µL sample. The whole immunologic operating process can be terminated within 6 min. This strategy of repetitively breaking the CL reaction involving chemical bonds within one luminophore is promising for semi-automatic as well as fully automatic single molecule detection and extends the commercialized application of CL immunodiagnosis.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Fotones , Compuestos de Cadmio/química , Telurio/química , Mediciones Luminiscentes , Inmunoensayo , Tirotropina
5.
Anal Chem ; 95(17): 6948-6954, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37083347

RESUMEN

Coreactant-free electrochemiluminescence (ECL) is promising for removing the exogenous effects of coreactant and simplify the operation procedures and setups of commercialized ECL bioassays. Herein, an electrosterically involved strategy for achieving a low-triggering-potential (+0.21 V vs Ag/AgCl) and coreactant-free ECL from dual-stabilizer-capped CdTe nanocrystals (NCs) is proposed with mercaptopropionic acid (MPA) and hexametaphosphate (HMP) as the capping agents of luminophores. Upon employing the CdTe NCs as the ECL tag for the immunoassay, all the tags in the bioconjugates of the CdTe NCs and the secondary antibody (Ab2|CdTe) as well as in the final achieved sandwich-type immunocomplexes can exhibit efficient coreactant-free ECL with an electrosterically involved triggering potential nature. The bioconjugates of Ab2|CdTe with Ab2 no more than 30 kDa, such as the thyroid stimulating hormone (30 kDa) and the recombinant pro-gastrin releasing peptide (ProGRP, 14 kDa), merely exhibit coreactant-free ECL around +0.24 V, while bioconjugates of Ab2|CdTe with an Ab2 beyond 30 kDa only give off coreactant-free ECL around +0.82 V. Due to the further enhanced electrosteric effect in sandwich-type immunocomplexes, only the ECL immunosensor with ProGRP as the target can give off coreactant-free ECL around +0.24 V. The electrosterically involved and coreactant-free ECL of CdTe NCs is consequently utilized to sensitively and selectively determine the molecular protein ProGRP, which demonstrates a wide linearity range from 0.1 to 2000 pg/mL and a low limit of detection at 0.05 pg/mL (S/N = 3). This low-triggering-potential and coreactant-free combined ECL platform indicates that engineering the surface of CdTe NCs with a protein can improve the performance of ECL tags in a protein-weight-involved electrosterical way.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Cadmio/química , Técnicas Biosensibles/métodos , Mediciones Luminiscentes/métodos , Inmunoensayo/métodos , Telurio/química , Técnicas Electroquímicas/métodos , Límite de Detección
6.
Anal Chem ; 95(8): 4155-4161, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36781377

RESUMEN

A single-stabilizer-capped strategy is proposed for achieving highly efficient and surface-defect-involved electrochemiluminescence (ECL) from unary copper nanoclusters (NCs) via employing l-cysteine (Cys) as a capping agent of luminophore. The Cys-capped CuNCs (Cys-CuNCs) can be electrochemically injected with valence band (VB) holes and exhibit eye-touchable ECL processes around +0.95 and +1.15 V upon employing TPrA as a coreactant. Both accumulated ECL spectra and spooling ECL spectra demonstrated that the two ECL processes are of the same single waveband and spectrally identical to each other with the same maximum emission wavelength of 640 nm. Promisingly, ECL of the Cys-CuNCs/TPrA system is obviously red-shifted for ∼150 nm to PL of Cys-CuNCs, indicating that the bandgap-engineered routes for ECLs of Cys-CuNCs are completely blocked. The oxidative-reduction ECL process of the Cys-CuNCs/TPrA system is a kind of highly efficient, eye-visible, and single-color emission in surface-defect-involved route. The capping agent of Cys can enable the CuNCs/TPrA system with a stronger ECL than other thiol capping agents, so that Cys-CuNCs are utilized as ECL tags for sensitive and selective immunoassays, which exhibit a wide linear response range from 0.05 pg/mL to 0.5 ng/mL and a limit of detection of 0.01 pg/mL (S/N = 3) with carcinoembryonic antigen as the analyte. Moreover, both the luminophore Cys-CuNCs and conjugates Ab2-CuNCs can be safely stored in aqueous media without any protector, which is promising for the evolution and clinic application of metal NC ECL in the surface-defect-involved route.


Asunto(s)
Cobre , Mediciones Luminiscentes , Límite de Detección , Fotometría , Inmunoensayo
7.
Anal Chem ; 95(26): 10096-10104, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37351925

RESUMEN

In this work, a potential-resolved electrochemiluminescence (ECL) multiplex immunoassay (MIA) was developed using zirconium-based metal-organic framework (MOF) nanoparticles with intense self-ECL as an anodic ECL tag and CdTe nanocrystals (NCs) as a cathodic ECL tag. ECL luminophore 5,5'-(anthracene-9,10-diyl)diisophthalic acid (H4ADIP) and coreactant hexamethylenetetramine (HMT) bound to zirconium nodes in the MOF, giving Zr-ADIP-HMT nanoparticles. Benefiting from the intrareticular charge transfer (ICT) between the oxidized ligands of H4ADIP and HMT via hydrogen bonds, the intense self-ECL from Zr-ADIP-HMT was applied to the potential-resolved ECL MIA without an exogenous anodic coreactant, which can eliminate detrimental effects of multiplex coreactants and anodic ECL emission from CdTe NCs. The ICT within Zr-ADIP-HMT nanoparticles could shorten the electron transport path and reduce the complexity of radical intermediate transport. The ECL intensity from Zr-ADIP-HMT was 18.6-fold that from the mixture of H4ADIP and HMT. In potential-resolved ECL MIA, two lung cancer biomarkers, carcinoembryonic antigen and neuron-specific enolase, were adopted as model analytes, with detection limits of 18 and 5.3 fg·mL-1, respectively. The dual-ligand Zr-ADIP-HMT nanoparticles provide a proof of concept using ICT-based self-ECL luminophores for potential-resolved ECL MIAs with isolated coreactants.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Nanopartículas del Metal , Estructuras Metalorgánicas , Nanopartículas , Puntos Cuánticos , Estructuras Metalorgánicas/química , Circonio , Compuestos de Cadmio/química , Técnicas Electroquímicas , Mediciones Luminiscentes , Telurio/química , Nanopartículas/química , Inmunoensayo , Nanopartículas del Metal/química , Límite de Detección
8.
Angew Chem Int Ed Engl ; 62(2): e202214487, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36347831

RESUMEN

Electrochemiluminescence (ECL) represents a widely explored technique to generate light, in which the emission intensity relies critically on the charge-transfer reactions between electrogenerated radicals. Two types of charge-transfer mechanisms have been postulated for ECL generation, but the manipulation and effective probing of these routes remain a fundamental challenge. Here, we demonstrate the design of quantum dot (QD) aerogels as novel ECL luminophores via a versatile water-induced gelation strategy. The strong electronic coupling between adjacent QDs enables efficient charge transport within the aerogel network, leading to the generation of highly efficient ECL based on the selectively improved interparticle charge-transfer route. This mechanism is further verified by designing CdSe-CdTe mixed QD aerogels, where the two mechanistic routes are clearly decoupled for ECL generation. We anticipate our work will advance the fundamental understanding of ECL and prove useful for designing next-generation QD-based devices.

9.
Anal Chem ; 94(45): 15801-15808, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36334096

RESUMEN

The investigation on electrochemiluminescence (ECL) multiplexing bioassays mainly focuses on simultaneously detecting either proteins or nucleic acids. To overcome the limitation of a short waveband for spectrum-resolved ECL multiplexing bioassays, herein, a highly monochromatic (FWHM <40 nm) and bandgap-engineered ECL luminophore, that is, mercaptopropionic acid-capped and Zn2+-mediated aggregation-induced emission (AIE) assembly of Au nanocrystals (NCs) (Zn2+-AIE-AuNCs), of strong emission and the maximum emission wavelength at 485 nm is developed. The highly monochromatic and bandgap-engineered ECL (485 nm) of Zn2+-AIE-AuNCs can multiplex with the single-waveband and surface-defect-involved ECL (775 nm) of dual-stabilizer-capped CuInS2@ZnS NCs (CIS@ZnS-NCs), enabling a spectrum-resolved ECL multiplexing strategy with different NCs luminophores of a similar particle size as tags. This ECL multiplexing strategy can be utilized to simultaneously detect antigen and DNA probe together without any additional signal amplification procedure and obvious spectroscopic cross-talk, in which the highly monochromatic ECL from Zn2+-AIE-AuNCs is utilized to dynamically determine human carcinoembryonic antigen from 1 pg/mL to 50 ng/mL with a limit of detection (LOD) of 0.3 pg/mL, while the single-waveband ECL from CIS@ZnS-NCs is employed to linearly detect wild-type p53 from 1 pM to 50 nM with a LOD of 0.5 pM. The ECL immunoassay of the proposed strategy is free from the interference of the synchronously conducted DNA probe assay and vice versa, which would open an avenue to couple the immunoassay and DNA probe assay together for clinical colon and breast cancer identification.


Asunto(s)
Técnicas Biosensibles , Mediciones Luminiscentes , Humanos , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Límite de Detección , Sondas de ADN , Bioensayo , Técnicas Biosensibles/métodos
10.
Anal Chem ; 94(35): 12070-12077, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35994734

RESUMEN

Single-color electrochemiluminescence (ECL) of nanoparticles is normally achieved in a bandgap engineered route via passivating the nanoparticle surface. Herein, when linear mercaptoalkanoic acids are employed as the thiol-capping agent of unary Au nanoclusters (NCs), a single-stabilizer-capped strategy is proposed to achieve surface defect-involved and single-color ECL from the AuNCs with hydrazine (N2H4) as the coreactant. The carbon skeleton of the linear mercaptoalkanoic acids exhibits important effects on the ECL of the AuNCs, and efficient oxidative-reductive ECL is achieved with 8-mercaptooctanoic acid (MOA), 11-mercaptoundecanoic acid (MUA), and 12-mercaptododecanoic acid (MDA) capped AuNCs, respectively. The ECL of these AuNCs not only exhibits similar ECL intensity-potential profiles with the same maximum emission potential of ∼1.20 V (vs Ag/AgCl), but also demonstrates almost identical spectral ECL profiles of the same maximum emission wavelength around 713 nm as well as the same fwhm of 64 nm. The ECL of AuNCs/N2H4 is obviously red-shifted to the photoluminescence of AuNCs, which not only provides unambiguous evidence that bandgap-engineered ECL of these AuNCs is quenched but also manifests that the capping agent of linear mercaptoalkanoic acid is promising for the achievement of surface defect-involved and single-color ECL from AuNCs. The MUA capped AuNCs can be utilized as an ECL tag for a sensitive and selective immunoassay, which exhibits a broad linear range from 0.5 mU/mL to 1 U/mL with a low limit of detection of 0.1 mU/mL (S/N = 3) with CA125 as the model analyte. This work provides a promising alternative to the traditional surface-passivating strategy for the achievement of single-color ECL from nanoparticle luminophores.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanopartículas , Técnicas Electroquímicas , Oro , Inmunoensayo , Límite de Detección , Mediciones Luminiscentes
11.
Anal Chem ; 94(33): 11688-11694, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35943953

RESUMEN

Herein, low-triggering-potential (LTP) electrochemiluminescence (ECL) with an onset around 0.0 V (vs Ag/AgCl) is proposed with bovine serum albumin (BSA)-stabilized Au nanocrystals (BSA-AuNCs) as a luminophore and hydrazine hydrate (N2H4) as a coreactant. The BSA-AuNCs/N2H4 system can exhibit efficient LTP-ECL around 0.37 V with the luminophore of both monodispersed and surface-confined states. The LTP-ECL of BSA-AuNCs/N2H4 is a kind of single-color emission with a maximum emission wavelength around 740 nm, which is obviously red-shifted for 80 nm from that of BSA-AuNCs PL, and indicates that the ECL is generated in a surface-defect-involved route instead of the band-gap-engineered route. Importantly, BSA-AuNCs can be utilized as ECL tags to perform sandwich-type immunoassays with acceptable sensitivity and selectivity, which exhibits a wide linear response for determining CA125 from 0.5 to 1000 mU/mL and a limit of detection of 0.05 mU/mL (S/N = 3).


Asunto(s)
Nanopartículas , Albúmina Sérica Bovina , Técnicas Electroquímicas , Oro/química , Inmunoensayo , Mediciones Luminiscentes , Nanopartículas/química , Albúmina Sérica Bovina/química
12.
Anal Chem ; 94(24): 8811-8817, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35675670

RESUMEN

The photoluminescence, electroluminescence, and electrochemiluminescence from nanocrystals (NCs) have been extensively exploited for both fundamental and applied investigation over two decades, while the understanding of chemiluminescence (CL) from NCs is still far from clear by now. Herein, a general route for triggering CL from NC luminophore is proposed by extensively exploiting the charge transfer between n-type NCs and oxidants. Oxidants, such as K2S2O8, H2O2, KMnO4, and NaClO, can chemically inject the hole onto the valence band (VB) of methionine-capped n-type AuNCs (Met@AuNCs) and enable the occurrence of efficient radiative-charge-recombination between the chemically injected exogenous VB hole and the pre-existed endogenous conduction band (CB) electron, which eventually results in single-color and defect-involved CL with the maximum emission wavelength around 824 nm. The CL of Met@AuNCs/oxidant is qualified for ultrasensitive CL immunoassay in a similar procedure to the biotin-avidin and magnetic separation involved commercial CL immunoassay and exhibits acceptable performance for linearly determining carcinoembryonic antigen from 50 pg/mL to 100 ng/mL with a limit of detection of 10 pg/mL (S/N = 3). This strategy provides a general route to develop nanoparticulate CL luminophores and might eventually enable CL multiplexing assay via extensively exploiting the CL of different wavebands.


Asunto(s)
Luminiscencia , Nanopartículas , Peróxido de Hidrógeno , Mediciones Luminiscentes/métodos , Nanopartículas/química , Oxidantes
13.
Anal Chem ; 94(8): 3718-3726, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35166109

RESUMEN

Singlet oxygen (1O2) is an important reactive oxygen species (ROS) that is intensively involved in natural photochemical and photobiological processes. Herein, selectively lighting up 1O2 is achieved in the aggregation-induced emission (AIE) of electrochemiluminescence (ECL) from the Zn2+-mediated AIE assembly of Au nanoclusters (Zn2+-AIE-AuNCs). Zn2+-AIE-AuNCs can exhibit efficient AIE ECL and photoluminescence (PL) along with 1O2 generation in energy and charge transfer routes, respectively. The AIE ECL of the Zn2+-AIE-AuNCs/tripropylamine (TEA) system in carbonate buffer is located around 703 nm with the dimeric aggregate of 1O2 as an emitter because electrochemically oxidizing coexisted Zn2+-AIE-AuNCs and TEA in carbonate buffer would promote the oxygen vacancy (Ov) of Zn2+-AIE-AuNCs, which could selectively enable the generation of emissive singlet oxygen in the energy transfer route by effectively transferring the energy from excited singlet Zn2+-AIE-AuNCs to the triplet ground state of dissolved oxygen (3O2). No emissive 1O2 is detected via electrochemically oxidizing the Zn2+-AIE-AuNCs in the case without either carbonate buffer or TEA, and the Zn2+-AIE-AuNCs/TEA system can only exhibit AIE ECL around 485 nm with Zn2+-AIE-AuNCs as the emitter in carbonate-free buffers. Photoexciting Zn2+-AIE-AuNCs merely brings out band-gap-engineered AIE PL around ∼485 nm with Zn2+-AIE-AuNCs as the emitter, which manifests that the 1O2 generated in the charge transfer route via photoexciting Zn2+-AIE-AuNCs is un-emissive. This work not only proposes an effective strategy for AIE with 1O2 as an emitter but also opens a promising way to selectively light up 1O2.


Asunto(s)
Oxígeno , Oxígeno Singlete , Transferencia de Energía , Fotometría , Especies Reactivas de Oxígeno
14.
Anal Chem ; 94(8): 3637-3644, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35187927

RESUMEN

The intensity of electrochemiluminescence (ECL) usually changes rapidly with the progress of the electrochemical process, making it difficult to determine the ECL spectrum with a conventional photomultiplier in a wavelength scan model. Herein, a band-pass filter (BPF)-involved modulating strategy is proposed to upgrade a conventional ECL analyzer to a highly sensitive ECL spectrometer without changing its hardware. The ECL spectrum can be figured out by rapidly and/or continuously modulating a part of the ECL intensity-time curve with a BPF array of different central wavelengths as well as correcting the ECL intensity at different measurement times by a univariate cubic polynomial model. This strategy not only can determine the spectrum of ultra-weak emission with high sensitivity via merely modulating the emission within a short period, including the weak self-ECL from either Ru(bpy)32+ or tripropylamine (TPA), but also can demonstrate the interaction between the co-existing emitters. It is shown that the ECL from both Ru(bpy)32+ and TPA of the Ru(bpy)32+/TPA system can be mutually promoted in electrochemical potential and in a concentration-dependent way. The self-ECL of TPA at the potential of 1.24 V can be enhanced from 4.9- to 51-fold with the Ru(bpy)32+ concentration increasing from 0.01 to 0.8 µM. In the presence of 0.04 µM Ru(bpy)32+, the self-ECL of TPA is enhanced by 94- and 10.2-fold at the potential of 1.01 and 1.76 V, respectively. The portable inexpensive BPF turntable device is also useful in spectrum-resolved multi-analyte determination and ratiometric ECL biosensors.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Mediciones Luminiscentes
15.
Anal Chem ; 94(2): 1350-1356, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34962776

RESUMEN

Electrochemiluminescence (ECL) is conventionally generated in either an annihilation or a coreactant route, and the overwhelming majority of ECL research is conducted in the coreactant route via oxidizing or reducing the coexisting coreactant and luminophore. The coreacant-free ECL generated via merely oxidizing the luminophore would break through the ceiling of coreactant ECL via excluding the detrimental effects of exogenous coreactant and dissolved oxygen. Herein, by exploiting the rich-electron nature of n-type nanocrystals (NCs), coreacant-free ECL is achieved via merely oxidizing 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) capped InP/ZnS NCs, i.e., InP/ZnSMPA-MSA. The electron-rich InP/ZnSMPA-MSA can be electrochemically injected with holes via two oxidative processes at around +0.75 and +1.37 V (vs Ag/AgCl), respectively, and the exogenous hole can directly combine the conduction band (CB) electron of InP/ZnSMPA-MSA, resulting in two coreactant-free ECL processes without employing any exogenous coreactant. The deprotonation process for the carboxyl group of the capping agents can provide a negatively charged surface to InP/ZnSMPA-MSA and enhance the coreactant-free ECL. The hole-injecting process at +1.37 is much stronger than that at +0.75 V and eventually enables an ∼2000-fold enhanced ECL at +1.37 V than that at +0.75 V. The ECL at +1.37 V can be utilized for coreactant-free ECL immunoassay with prostate-specific antigen (PSA) as analyte, which exhibits an acceptable linear response from 5 pg·mL-1 to 1 ng·mL-1 with a limit of detection of 0.3 pg·mL-1. The coreactant-free ECL route would provide an alternative to both annihilation and coreactant routes, simplify the ECL assay procedure and deepening the ECL mechanism investigations.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Nanopartículas/química , Sulfuros , Compuestos de Zinc/química
16.
Anal Chem ; 94(50): 17725-17732, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36472242

RESUMEN

Sensitively determining trace nucleic acid is of great significance for pathogen identification. Herein, a dynamic DNA nanosystem-integrated ratiometric electrochemical biosensor was proposed to determine human immunodeficiency virus-associated DNA fragment (HIV-DNA) with high sensitivity and selectivity. The dynamic DNA nanosystem was composed of a target recycling unit and a multipedal DNA walker unit. Both of them could be driven by a toehold-mediated strand displacement reaction, enabling an enzyme-free and isothermal amplification strategy for nucleic acid determination. The target recycling unit could selectively recognize HIV-DNA and activate the multipedal DNA walker unit to roll on the electrode surface, which would lead to bidirectional signal variation for ratiometric readout with cascade signal amplification. Benefiting from the synergistic effect of the dynamic DNA nanosystem and the ratiometric output mode, the ultrasensitive detection of HIV-DNA was achieved in a wide linear range of 6 orders of magnitude with a limit of detection of 36.71 aM. The actual usability of the proposed sensor was also verified in complex biological samples with acceptable performance. This dynamic DNA nanosystem-integrated ratiometric sensing strategy might be promising in the development of reliable point-of-care diagnostic devices for highly sensitive and selective pathogen identification.


Asunto(s)
Técnicas Biosensibles , Infecciones por VIH , Humanos , Técnicas Electroquímicas , Técnicas de Amplificación de Ácido Nucleico , ADN/genética , Límite de Detección , Hibridación de Ácido Nucleico
17.
Anal Chem ; 94(34): 11934-11939, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35976331

RESUMEN

The electrochemiluminescence (ECL) bioassay is prominently carried out with the involvement of the coreactant. To remove the detrimental effects of the coreactant on the ECL of luminophores, herein, a promising ECL immunoassay strategy with biocompatible nanoparticles as the luminophore is proposed, which involves directly and electrochemically oxidizing the luminophore methionine-capped Au (Met@Au) nanocrystals (NCs) without the participation of any coreactant. Met@Au NCs are a kind of n-type nanoparticles, and they can be electrochemically injected with valence band (VB) holes around +0.80 and +1.10 V (vs Ag/AgCl). The electrochemically injected exogenous VB hole can recombine with the endogenous conduction band electron of Met@Au NCs and eventually bring out two coreactant-free and near-infrared ECL processes around 0.80 V (ECL-1) and 1.10 V (ECL-2). The intensity of coreactant-free ECL is primarily determined by the electrochemical oxidation-induced hole-injection process. ECL-2 is considerably stronger than ECL-1 and can be exploited for determining the carcinoembryonic antigen (CEA) in a sandwich immunoassay procedure with a linear range from 0.1 to 50 pg/mL as well as a limit of detection of 0.03 pg/mL (S/N = 3).


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanopartículas , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Límite de Detección , Mediciones Luminiscentes/métodos , Nanopartículas del Metal/química , Nanopartículas/química
18.
Anal Chem ; 94(18): 6902-6908, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35486816

RESUMEN

All commercial chemiluminescence (CL) assays are conducted with either glow or flash CL of eye-visible waveband from chemical luminophores. Herein, glow and flash, as well as waveband adjustable CL from the same nanoparticle luminophore of thiol-capped CuInS2@ZnS nanocrystals (CIS@ZnS-Thiol), are proposed via extensively exploiting the differed redox nature of CL triggering reagents. Taking thiosalicylic acid (TSA) as the model thiol-capping agent, the electron-injection-initiated charge transfer between CIS@ZnS-TSA and reductant can bring out efficient glow CL while the hole-injection-initiated charge transfer between CIS@ZnS-TSA and oxidant can give off obvious flash CL under optimum conditions. The maximum emission wavelength for CL of CIS@ZnS-TSA is adjustable from 730 nm to 823 nm via employing different triggering agents. Promisingly, the coexistent reductant of N2H4·H2O and oxidant of H2O2 can be employed as dual triggering reagents to trigger eye-visible and highly efficient flash CL from CIS@ZnS-TSA. The maximum emission intensity for flash CL of CIS@ZnS-TSA/N2H4-H2O2 is 101-fold greater than the glow CL of CIS@ZnS-TSA/N2H4 and 22-fold greater than the flash CL of CIS@ZnS-TSA/H2O2, respectively. The flash CL from CIS@ZnS-TSA/N2H4-H2O2 is qualified for highly sensitive and selective CL immunoassay in a commercialized typical procedure with the entire operating process manually terminated within 35 min.


Asunto(s)
Luminiscencia , Nanopartículas , Peróxido de Hidrógeno , Nanopartículas/química , Oxidantes , Sustancias Reductoras , Compuestos de Sulfhidrilo , Sulfuros/química , Compuestos de Zinc/química
19.
Anal Chem ; 93(36): 12250-12256, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34463494

RESUMEN

Electrochemiluminescence (ECL) of low triggering potential is strongly anticipated for ECL assays with less inherent electrochemical interference and improved long-term stability of the working electrode. Herein, effects of the thiol capping agents and the states of luminophores, i.e., the thiol-capped CuInS2@ZnS nanocrystals (CuInS2@ZnS-Thiol), on the ECL triggering potential of CuInS2@ZnS-Thiol/N2H4·H2O were explored on the Au working electrode. The thiol capping agent of glutathione (GSH) not only enabled CuInS2@ZnS-Thiol/N2H4·H2O with the stronger oxidative-reduction ECL than other thiol capping agents but also demonstrated the largest shift for the ECL triggering potential of CuInS2@ZnS-Thiol/N2H4·H2O upon changing the luminophores from the monodispersed state to the surface-confined state. CuInS2@ZnS-GSH/N2H4·H2O exhibited an efficient oxidative-reduction ECL around 0.78 V (vs Ag/AgCl) with CuInS2@ZnS-GSH of the monodispersed state. Upon employing CuInS2@ZnS-GSH as the ECL tag and immobilizing them onto the Au working electrode, the oxidative-reduction ECL of CuInS2@ZnS-GSH/N2H4·H2O was lowered to 0.32 V (vs Ag/AgCl), which was about 0.88 V lower than that of traditional Ru(bpy)32+/TPrA (typically ∼1.2 V, vs Ag/AgCl). The ECL of the CuInS2@ZnS-GSH/N2H4·H2O system with the luminophore of both monodispersed and surface-confined states was spectrally identical to each other, indicating that this surface-confining strategy exhibited negligible effect on the excited state for the ECL of CuInS2@ZnS-GSH. A surface-confined ECL sensor around 0.32 V was fabricated with CuInS2@ZnS-GSH as a luminophore, which could sensitively and selectively determine the K-RAS gene from 1 to 500 pM with a limit of detection at 0.5 pmol L-1 (S/N = 3).


Asunto(s)
Mediciones Luminiscentes , Nanopartículas , Sulfuros , Compuestos de Zinc
20.
Anal Chem ; 93(25): 8931-8936, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34137591

RESUMEN

The overwhelming majority of commercially available chemiluminescence (CL) assays are conducted in the eye-visible region. Herein, a near-infrared (NIR) aqueous CL strategy was proposed with CuInS2@ZnS nanocrystals (CIS@ZnS NCs) as emitters. Hydrazine hydrate (N2H4·H2O) could inject electrons into the conduction band of the CIS@ZnS NCs and simultaneously transformed to the intermediate radical N2H3•. N2H3• reduced dissolved oxygen (O2) to O2-•, while the O2-• could inject holes into the valence band of the CIS@ZnS NCs. The recombination of electrons and holes at Cu+ defects in CIS@ZnS NCs eventually yielded efficient NIR CL at around 824.1 nm, which is the longest waveband for NCs CL to the best of our knowledge. The NIR CL could be conveniently performed in the neutral aqueous medium (pH 7.0) with a quantum yield of 0.0155 Einstein/mol and was successfully employed for constructing a signal-off CL biosensor with ascorbic acid as the analyte as well as a signal-on CL biosensor for determining ascorbate oxidase, which indicates that this NIR CL system has a promising potential for bioassays in diverse ways.


Asunto(s)
Luminiscencia , Nanopartículas , Bioensayo , Hidrazinas , Oxígeno , Sulfuros , Compuestos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA