Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mikrochim Acta ; 189(1): 19, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34877612

RESUMEN

A rapid and facile method is reported for the detection of ascorbic acid using molybdenum disulfide quantum dots (MoS2 QDs) as a fluorescence sensor. Water-soluble and biocompatible MoS2 QDs with the maximum fluorescence emission at 506 nm have been successfully synthesized by hydrothermal method and specific detection for ascorbic acid (AA) was constructed to utilize the modulation of metal ion on the fluorescence of MoS2 QDs and the affinity and specificity between the ligand and the metal ion. The fluorescence of MoS2 QDs was quenched by the irreversible static quenching of Fe3+ through the formation of a MoS2 QDs/Fe3+ complex, while the pre-existence of AA can retain the fluorescence of MoS2 QDs through the redox reaction between AA and Fe3+. Based on this principle, a good linear relationship was obtained in the AA concentration range 1 to 150 µM with a detection limit of 50 nM. The proposed fluorescent sensing strategy was proven to be highly selective, quite simple, and rapid with a requirement of only 5 min at room temperature (RT), which is particularly useful for rapid and easy analysis. Satisfactory results were obtained when applied to AA determination in fruits, beverages, and serum samples as well as AA imaging in living cells, suggesting its great potential in constructing other fluorescence detection and imaging platforms.


Asunto(s)
Ácido Ascórbico/sangre , Disulfuros/química , Colorantes Fluorescentes/química , Molibdeno/química , Puntos Cuánticos/química , Ácido Ascórbico/química , Citrus/química , Jugos de Frutas y Vegetales/análisis , Células HeLa , Humanos , Hierro/química , Límite de Detección , Microscopía Confocal , Microscopía Fluorescente , Espectrometría de Fluorescencia
2.
Nat Commun ; 15(1): 4658, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821957

RESUMEN

The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4-43% higher growth rates, 14-17% higher survival rates and 4-7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.


Asunto(s)
Biodiversidad , Bosques , Hojas de la Planta , Árboles , Hojas de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Ecosistema , Suelo/química , Clima
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122649, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963221

RESUMEN

We proposed a rapid and ratiometric fluorescent detection method for hypochlorite by glutathione functionalized molybdenum disulfide quantum dots (G-MoS2 QDs). The G-MoS2 QDs were obtained through a hydrothermal method and the maximum fluorescence intensity was obtained at 430 nm under excitation of 360 nm. The fluorescence of G-MoS2 QDs at 430 nm can be weakened by curcumin through the inner filter effect, meanwhile the fluorescence of curcumin at 540 nm appeared. Hypochlorite can fast oxidize curcumin and weaken the inner filter effect, thus the fluorescence of curcumin at 540 nm decreased and the fluorescence of G-MoS2 QDs at 430 nm increased. This process takes only 30 s at room temperature. This is the rationale behind our rapid ratiometric fluorescent detection model for hypochlorite. Two linear detection ranges for hypochlorite are obtained with concentration from 1 to 20 µM and 20 to 30 µM, the limit of detection (LOD) was 11.5 nM. The standard spike recovery tests on milk and tap water samples showed satisfactory results, which extended the application of G-MoS2 QDs in the field of ratiometric fluorescence detection assays.


Asunto(s)
Curcumina , Puntos Cuánticos , Molibdeno , Ácido Hipocloroso , Colorantes Fluorescentes , Glutatión , Espectrometría de Fluorescencia/métodos , Límite de Detección
4.
Nat Plants ; 9(11): 1795-1809, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37872262

RESUMEN

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.


Asunto(s)
Ecosistema , Árboles , Humanos , Árboles/metabolismo , Bosques , Hojas de la Planta/metabolismo , Hábitos , Carbono/metabolismo
5.
Acta Biomater ; 115: 358-370, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32798720

RESUMEN

Heat-treated cancer cells have thermo-resistance due to the up-regulated levels of heat shock proteins (HSP) resulting in low therapeutic efficiency and ineffective ablation of tumors. In this work, we report pH-responsive Ag2S nanodots (Ag2S NDs) loaded with HSP70 inhibitor (QE-PEG-Ag2S) for enhanced photothermal cancer therapy. QE-PEG-Ag2S was easily prepared via self-assembly of hydrophobic Ag2S NDs, amphiphilic pH-responsive PEG5k-PAE10k polymer, and an HSP70 inhibitor quercetin (QE). QE-PEG-Ag2S has ideal water-solubility and biocompatibility, can rapidly enter cells, and preferentially accumulate in cell lysosomes. The slightly acidic environment of tumor cells and the acidity of lysosomes as well as the high temperature generated by photothermal therapy under irradiation of NIR light (808 nm) promote the release of the inhibitor molecules to reduce the heat resistance of cancer cells and improve the in vivo photothermal therapy efficiency. Moreover, QE-PEG-Ag2S has good photoacoustic imaging (PAI) ability; this QE-PEG-Ag2S concentration dependent signal can precisely follow the accumulation of the nanomaterials in tumors and dictate the correct time for light therapy. As a result, QE-PEG-Ag2S achieved complete tumor ablation effect with no recurrence when only irradiated with NIR light for 10 min. This approach offers a new approach for the theranostic applications of Ag2S NDs. STATEMENT OF SIGNIFICANCE: In this work, pH-responsive Ag2S nanodots loaded with the heat shock protein inhibitor for enhanced photothermal cancer therapy have been simply prepared via self-assembly process. This nanoagent possesses ideal water-solubility and biocompatibility, can rapidly enter cells, and preferentially accumulate in cell lysosomes. The acidic environment of tumor cells and the acidity of lysosomes, as well as the high temperature generated by photothermal therapy under irradiation of NIR light promote the release of the inhibitor molecules from the nanoagent to improve the in vivo photothermal therapy efficiency. Moreover, the photoacoustic imaging (PAI) of the nanoagent can precisely follow the accumulation of the nanomaterials in tumors and dictate the light therapy time to guarantee the complete tumor ablation effect with no recurrence.


Asunto(s)
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Línea Celular Tumoral , Proteínas HSP70 de Choque Térmico , Humanos , Concentración de Iones de Hidrógeno , Fototerapia , Plata
6.
Behav Processes ; 177: 104155, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32485232

RESUMEN

Mirror self-recognition (MSR) is considered a crucial step in the emergence of self-cognition. The MSR paradigm has become a standard method for evaluating self-cognition in several species. For example, Eurasian magpies and Indian house crows have passed the mark test for self-cognition, whereas efforts to find MSR in other corvid species have failed. However, no literature has conducted MSR tests on azure-winged magpies, a species of corvids. Therefore, the current research aimed to investigate the MSR behaviours of azure-winged magpies upon looking into a mirror for the first time. The study included four tests: (1) mirror preference and standardised mirror exploration, (2) single vertical mirror test, (3) mark test and (4) mirror-triggered search test. The azure-winged magpies displayed immense curiosity towards the mirror and their images in the mirror in Test 1&2. In the subsequent mark tests, they failed to recognise themselves in the mirror and regarded their images as conspecifics. Behaviour analysis showed no significant difference between marked and unmarked behaviours. Finally they seemed to infer the presence of bait from the image in the mirror, but were found to fail to understand that the location of the bait in the mirror was the same as that in the real world. For a better insight into the MSR behaviour of azure-winged magpies, research studies involving prolonged mirror exposure and training are recommended.


Asunto(s)
Passeriformes , Reconocimiento en Psicología , Animales , Conducta Animal , Cognición
7.
ACS Appl Bio Mater ; 2(2): 630-637, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35016302

RESUMEN

Development of multifunctional diagnosis and treatment reagents is very meaningful in clinical application. Herein, we developed a polydopamine-based (PDA-based) tumor targeted multifunctional reagent by surface-initiated atom transfer radical polymerization (ATRP) strategy. First, the targeted PDA nanoparticles were prepared via combining with folic acid (FA) and dopamine. Then ATRP technology was used to graft the europium(III) complexes onto PDA surface (defined as FEDA). A series of detections revealed that the FEDA nanoparticles had been successfully prepared and exhibited a bright X-ray computer tomography (CT) and photoluminescence (PL) dual-mode imaging efficiency and an excellent photothermal therapy (PTT) effect in vivo/in vitro.

8.
Colloids Surf B Biointerfaces ; 173: 607-615, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30359959

RESUMEN

Copper sulfide nanoparticles(CuS NPs) have attracted considerable interest in the field of photothermal therapy(PTT) due to its low cost, easy preparation and favorable photothermal effect. However, lack of reliable visualization and relatively poor biocompatibility restrict its further bio-application. To overcome these limitations, polydopamine(PDA, a melanin-like biopolymer) stabilized CuS NPs and further chelated with iron ions (denoted as CuPDF) were designed as a versatile nanoplatform for T1-weighted MR imaging-guided PTT. In this system, PDA served as both bio-template to synthesis CuS NPs and an active platform to give MRI diagnostic capability. The as-prepared CuPDF NPs demonstrated strong absorption at NIR region, nearly three times higher than that of pure PDA NPs at 808 nm. Moreover, toxicity studies and histology evalution verified that CuPDF NPs possess excellent biocompatibility. In addition, CuPDF NPs showed significant MRI signal enhancement with high longitudinal relaxivity (r1 = 4.59 mM-1 s-1). In vivo MRI and biodistribution test confirmed the efficient accumulation of CuPDF NPs in the tumor region. After intravenous injection of CuPDF, irreversible tumor ablation was successfully achieved without inducing any obvious side effects by using 808-nm laser irradiation. All in all, these results indicated that the developed CuPDF NPs hold great potential as an effective theranostic agent for MR imaging guided PTT in vivo.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Indoles/química , Terapia Molecular Dirigida/métodos , Nanopartículas/química , Neoplasias/terapia , Polímeros/química , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Línea Celular Tumoral , Cobre/química , Cobre/farmacocinética , Doxorrubicina/química , Doxorrubicina/metabolismo , Composición de Medicamentos/métodos , Liberación de Fármacos , Femenino , Concentración de Iones de Hidrógeno , Rayos Infrarrojos , Inyecciones Subcutáneas , Terapia por Luz de Baja Intensidad/métodos , Imagen por Resonancia Magnética/métodos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Nanomedicina Teranóstica/métodos
9.
ACS Appl Mater Interfaces ; 10(37): 31664-31673, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30141895

RESUMEN

Dual-porosity hollow carbon spheres (DPHCs) with small mesopores (2-4 nm) and large through-holes (20-30 nm) in shells were successfully synthesized using colloidal silica as the template, small silica nanoparticles as nanomasks, and nontoxic dopamine as the carbon precursor followed by post-carbonization and etching. The synthesized DPHCs were further oxidized to be hydrophilic and then used to simultaneously deliver the protein bovine serum albumin (21 × 4 × 14 nm3) and the small molecule doxorubicin (<1 nm), which exhibited a high loading capacity of 689.4 and 1421.2 mg/g, respectively. The release of these two guest molecules can be controlled independently under the stimuli of heat and acidity. In vitro and in vivo experiments also proved that the DPHCs are promising for the co-delivery of multiple cargoes of different sizes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA