RESUMEN
PWAS (proteome-wide association study) is an innovative genetic association approach that complements widely used methods like GWAS (genome-wide association study). The PWAS approach involves consecutive phases. Initially, machine learning modeling and probabilistic considerations quantify the impact of genetic variants on protein-coding genes' biochemical functions. Secondly, for each individual, aggregating the variants per gene determines a gene-damaging score. Finally, standard statistical tests are activated in the case-control setting to yield statistically significant genes per phenotype. The PWAS Hub offers a user-friendly interface for an in-depth exploration of gene-disease associations from the UK Biobank (UKB). Results from PWAS cover 99 common diseases and conditions, each with over 10,000 diagnosed individuals per phenotype. Users can explore genes associated with these diseases, with separate analyses conducted for males and females. For each phenotype, the analyses account for sex-based genetic effects, inheritance modes (dominant and recessive), and the pleiotropic nature of associated genes. The PWAS Hub showcases its usefulness for asthma by navigating through proteomic-genetic analyses. Inspecting PWAS asthma-listed genes (a total of 27) provide insights into the underlying cellular and molecular mechanisms. Comparison of PWAS-statistically significant genes for common diseases to the Open Targets benchmark shows partial but significant overlap in gene associations for most phenotypes. Graphical tools facilitate comparing genetic effects between PWAS and coding GWAS results, aiding in understanding the sex-specific genetic impact on common diseases. This adaptable platform is attractive to clinicians, researchers, and individuals interested in delving into gene-disease associations and sex-specific genetic effects.
Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Femenino , Masculino , Asma/genética , Fenotipo , Programas Informáticos , ProteomaRESUMEN
Hypertension is a polygenic disease that affects over 1.2 billion adults aged 30-79 worldwide. It is a major risk factor for renal, cerebrovascular, and cardiovascular diseases. The heritability of hypertension is estimated to be high; nevertheless, our understanding of its underlying mechanisms remains scarce and incomplete. This study covered the entries from European ancestry from the UK-Biobank (UKB), with 74,090 cases diagnosed with essential (primary) hypertension and 200,734 controls. We compared the findings from large-scale genome-wide association studies (GWAS) to the gene-based method of proteome-wide association studies (PWAS). We focused on 70 statistically significant associated genes, most of which failed to reach significance in variant-based GWAS. A total of 30% of the PWAS-associated genes were validated against independent cohorts, including the Finnish Biobank. Furthermore, gene-based analyses that were performed on both sexes revealed sex-dependent genetics with a stronger genetic component associated with females. Analysis of systolic and diastolic blood pressure measurements confirms a strong genetic effect associated with females. We demonstrated that gene-based approaches provide insight into the underlying biology of hypertension. Specifically, the expression profiles of the identified genes exposed the enrichment of endothelial cells from multiple organs. Furthermore, females' top-ranked significant genes are involved in cellular immunity. We conclude that studying hypertension and blood pressure via gene-based association methods improves interpretability and exposes sex-dependent genetic effects, which enhances clinical utility.
Asunto(s)
Estudio de Asociación del Genoma Completo , Hipertensión , Masculino , Adulto , Humanos , Femenino , Predisposición Genética a la Enfermedad , Células Endoteliales , Hipertensión/genética , Proteoma/genética , Polimorfismo de Nucleótido Simple , Hipertensión EsencialRESUMEN
Hypothyroidism is a common endocrine disorder whose prevalence increases with age. The disease manifests itself when the thyroid gland fails to produce sufficient thyroid hormones. The disorder includes cases of congenital hypothyroidism (CH), but most cases exhibit hormonal feedback dysregulation and destruction of the thyroid gland by autoantibodies. In this study, we sought to identify causal genes for hypothyroidism in large populations. The study used the UK-Biobank (UKB) database, reporting on 13,687 cases of European ancestry. We used GWAS compilation from Open Targets (OT) and tuned protocols focusing on genes and coding regions, along with complementary association methods of PWAS (proteome-based) and TWAS (transcriptome-based). Comparing summary statistics from numerous GWAS revealed a limited number of variants associated with thyroid development. The proteome-wide association study method identified 77 statistically significant genes, half of which are located within the Chr6-MHC locus and are enriched with autoimmunity-related genes. While coding GWAS and PWAS highlighted the centrality of immune-related genes, OT and transcriptome-wide association study mostly identified genes involved in thyroid developmental programs. We used independent populations from Finland (FinnGen) and the Taiwan cohort to validate the PWAS results. The higher prevalence in females relative to males is substantiated as the polygenic risk score prediction of hypothyroidism relied mostly from the female group genetics. Comparing results from OT, TWAS, and PWAS revealed the complementary facets of hypothyroidism's etiology. This study underscores the significance of synthesizing gene-phenotype association methods for this common, intricate disease. We propose that the integration of established association methods enhances interpretability and clinical utility.