RESUMEN
PARP-3 is a member of the ADP-ribosyl transferase superfamily of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA DSB repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the retention of XRCC4/DNA ligase IV complex in chromatin, suggesting that PARP-3 and APLF accelerate DNA ligation during nonhomologous end-joining (NHEJ). Consistent with this, we show that class switch recombination in Aplf(-/-) B cells is biased toward microhomology-mediated end-joining, a pathway that operates in the absence of XRCC4/DNA ligase IV, and that the requirement for PARP-3 and APLF for NHEJ is circumvented by overexpression of XRCC4/DNA ligase IV. These data identify molecular roles for PARP-3 and APLF in chromosomal DNA double-strand break repair reactions.
Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/fisiología , Fosfoproteínas/fisiología , Poli(ADP-Ribosa) Polimerasas/fisiología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Eliminación de Gen , Humanos , Ratones , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Recombinantes de Fusión/fisiologíaRESUMEN
Topoisomerases regulate DNA topology and are fundamental to many aspects of chromosome metabolism. Their activity involves the transient cleavage of DNA, which, if it occurs near sites of endogenous DNA damage or in the presence of topoisomerase poisons, can result in abortive topoisomerase-induced DNA strand breaks. These breaks feature covalent linkage of the enzyme to the DNA termini by a 3'- or 5'-phosphotyrosyl bond and are implicated in hereditary human disease, chromosomal instability and cancer, and underlie the clinical efficacy of an important class of anti-tumour poisons. The importance of liberating DNA termini from trapped topoisomerase is illustrated by the progressive neurodegenerative disease observed in individuals containing a mutation in tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme that cleaves 3'-phosphotyrosyl bonds. However, a complementary human enzyme that cleaves 5'-phosphotyrosyl bonds has not been reported, despite the effect of DNA double-strand breaks containing such termini on chromosome instability and cancer. Here we identify such an enzyme in human cells and show that this activity efficiently restores 5'-phosphate termini at DNA double-strand breaks in preparation for DNA ligation. This enzyme, TTRAP, is a member of the Mg(2+)/Mn(2+)-dependent family of phosphodiesterases. Cellular depletion of TTRAP results in increased susceptibility and sensitivity to topoisomerase-II-induced DNA double-strand breaks. TTRAP is, to our knowledge, the first human 5'-tyrosyl DNA phosphodiesterase to be identified, and we suggest that this enzyme is denoted tyrosyl DNA phosphodiesterase-2 (TDP2).
Asunto(s)
Daño del ADN , Reparación del ADN , ADN-Topoisomerasas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Camptotecina/farmacología , Extractos Celulares/química , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Daño del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN , Etopósido/farmacología , Femenino , Biblioteca de Genes , Prueba de Complementación Genética , Humanos , Masculino , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/aislamiento & purificación , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Supresión Genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificaciónRESUMEN
Mutations in the fibroblast growth factor receptor 3 gene (FGFR3) cause achondroplasia (ACH), hypochondroplasia (HCH), and thanatophoric dysplasia types I and II (TDI/TDII). In this study, we performed a genetic study of 123 Brazilian patients with these phenotypes. Mutation hotspots of the FGFR3 gene were PCR amplified and sequenced. All cases had recurrent mutations related to ACH, HCH, TDI or TDII, except for 2 patients. One of them had a classical TDI phenotype but a typical ACH mutation (c.1138G>A) in combination with a novel c.1130T>C mutation predicted as being pathogenic. The presence of the second c.1130T>C mutation likely explained the more severe phenotype. Another atypical patient presented with a compound phenotype that resulted from a combination of ACH and X-linked spondyloepiphyseal dysplasia tarda (OMIM 313400). Next-generation sequencing of this patient's DNA showed double heterozygosity for a typical de novo ACH c.1138G>A mutation and a maternally inherited TRAPPC2 c.6del mutation. All mutations were confirmed by Sanger sequencing. A pilot study using high-resolution melting (HRM) technique was also performed to confirm several mutations identified through sequencing. We concluded that for recurrent FGFR3 mutations, HRM can be used as a faster, reliable, and less expensive genotyping test than Sanger sequencing.