Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Environ Contam Toxicol ; 81(2): 255-264, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34137922

RESUMEN

Imidacloprid (IMI) is an insecticide used worldwide, a neonicotinoid that could cause toxicity in non-target organisms. Zebrafish (Danio rerio) is a model organism widely used in different fields of research such as behavioral studies, biochemical parameters as well as neurotoxicity research. Here, we investigate whether the exposure to three concentrations (0.15, 15, and 45 µg/L) of IMI for 96 h alters responses in zebrafish. Oxidative stress parameters and acetylcholinesterase activity (AChE) as well as the behavioral responses of locomotion were measured. IMI exposure decreased distance traveled in fish exposed to the 45 µg/L. In the exploratory activity, time spent and transitions to the top area of the water column decreased in fish exposed to all concentrations of IMI. In addition, exposures to 45 and 15 µg/L of IMI decreased episodes of erratic movement in the zebrafish. Exposures to IMI at a concentration of 45 µg/L decreased the time spent in erratic movements and increased the time spent with no movement (i.e., "freezing"). Glutathione S-transferase (GST) activity was increased in the brain of zebrafish exposed for 96 h to concentrations of 0.15 and 45 µg/L. Brain AChE activity was reduced and the levels of carbonyl protein (CP) increased in brain of zebrafish at concentrations of 15 and 45 µg/L. Lipid peroxidation measured by TBARS and, also non-protein thiols (NPSH) did not show any variation in the brain of zebrafish exposed to IMI. Changes in the activity of cholinergic neurotransmitters in the brain tissues of zebrafish indicate IMI toxicity. Exposures of fish over 96 h to IMI at a nominal concentration of 45 µg/L caused more extensive sublethal responses in zebrafish, but this concentration is well above those expected in the aquatic environment. Studies are warranted to evaluate the effects on behavior and biomarker responses in fish exposed over longer periods to IMI at environmentally relevant concentrations.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Antioxidantes , Neonicotinoides/toxicidad , Nitrocompuestos , Estrés Oxidativo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
2.
Mol Biol Rep ; 45(6): 2631-2639, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30353476

RESUMEN

This work investigated the preventive effect of diphenyl diselenide [(PhSe)2] against the toxic effects of mercury in silver catfish (Rhamdia quelen). The animals were treated during 30 consecutive days with a (PhSe)2 supplemented feed (3.0 mg kg-1) or commercial feed. During the last 5 days the animals received a daily intraperitoneal dose of HgCl2 (1.7 mg kg-1) or Saline (0.9%). Twenty-four hours after the last HgCl2 injection, the animals were euthanized by spinal cord section to biological material obtainment. Hepatic (AST and ALT) and renal (ammonia and creatinine) toxicity biomarkers, δ-ALA-D activity, TBARS, total and non-protein thiols levels and hepatic, renal and blood mercury (Hg) and zinc (Zn) content were evaluated. Considering renal parameters, HgCl2 exposition increased serum creatinine levels and decreased δ-ALA-D activity, total and non-protein thiols and TBARS levels. HgCl2 exposure also decreased blood δ-ALA-D activity. With exception of blood δ-ALA-D activity and total thiols levels, (PhSe)2 supplementation partially prevented mercury induced alterations. Animals exposed to HgCl2 presented an increase in liver and kidney Hg content and a decrease in liver and blood Zn content. The alteration in blood Zn content was partially prevented with (PhSe)2 supplementation. With the exception of mercury and zinc content, no effects of HgCl2 exposure on hepatic tissue were observed. These results show that (PhSe)2 supplementation can represent a promising alternative to prevent the toxic effects presented by Hg exposure.


Asunto(s)
Derivados del Benceno/farmacología , Intoxicación por Mercurio/tratamiento farmacológico , Intoxicación por Mercurio/prevención & control , Compuestos de Organoselenio/farmacología , Animales , Derivados del Benceno/metabolismo , Bagres/metabolismo , Creatinina/sangre , Dieta , Suplementos Dietéticos , Femenino , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Cloruro de Mercurio/administración & dosificación , Mercurio/sangre , Intoxicación por Mercurio/sangre , Compuestos de Organoselenio/metabolismo , Compuestos de Sulfhidrilo/sangre , Zinc/sangre
3.
Environ Sci Pollut Res Int ; 27(32): 40563-40572, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32671705

RESUMEN

This study evaluated the toxic effects of inorganic mercury (Hg) in pregnant and lactating rats, as well as the possible protective effect of zinc (Zn) and N-acetylcysteine (NAC). Pregnant and lactating rats were pre-treated with ZnCl2 (27 mg/kg) and/or NAC (5 mg/kg) and after 24 h, they were exposed to HgCl2 (10 mg/kg). Animals were sacrificed 24 h after Hg exposure, and biochemical tests and metal determination were performed. Regarding pregnant rats, Hg exposure caused kidney, blood, and placenta δ-aminolevulinic acid dehydratase (δ-ALA-D) activity inhibition, and the pre-treatments showed a tendency of protection. Moreover, all the animals exposed to Hg presented high Hg levels in the kidney, liver, and placenta when compared with control group. Pregnant rats pre-exposed to Zn (Zn-Hg and Zn/NAC-Hg groups) presented an increase in hepatic metallothionein levels. Therefore, lactating rats exposed to Hg presented renal and blood δ-ALA-D inhibition; the pre-treatments showed a tendency to prevent the renal δ-ALA-D inhibition and prevented the blood δ-ALA-D inhibition caused by Hg. Lactating rats exposed to Hg presented high Hg levels in the kidney and liver. These results showed that 10 mg/kg of HgCl2 causes biochemistry alterations in pregnant and lactating rats, and Zn and NAC present promising results against these damages.


Asunto(s)
Acetilcisteína , Mercurio , Acetilcisteína/farmacología , Animales , Femenino , Riñón , Lactancia , Hígado , Cloruro de Mercurio/toxicidad , Mercurio/toxicidad , Porfobilinógeno Sintasa , Embarazo , Ratas , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA