Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicology ; 33(7): 801-817, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39003411

RESUMEN

Two monophyletic Daphnia species (Daphnia magna and D. similis) were exposed to a sub-lethal concentration of Pb (50 µg/L) for nine generations under two food regimes (usual and restricted) and analyzed for acetylcholinesterase (AChE) activity, first reproduction delay, lifespan, and net reproductive rate (R0) at the subcellular, individual, and population levels, respectively. In the sixth generation, Pb-acclimated neonates were moved to clean media for three more generations to check for recovery. The net reproductive rate (R0) of D. magna was not affected by Pb. However, Pb stimulated reproduction, reduced lifespan, and decreased AChE activity. First reproduction delay and lifespan did not improve during the recovery process, suggesting a possible genetic adaptation. Food restriction reduced R0, lifespan, delayed hatching, and increased AChE activity; the opposite outcomes were observed for D. similis. The full recovery shown by R0 suggests the physiological acclimation of D. similis. Under food restriction, the animals exhibited a reduction of R0 and lifespan, delayed first reproduction, and increased AChE activity; however, there was no effect of Pb. The recovery process under food restriction showed that D. similis might not cope with Pb exposure, indicating a failed recovery. Such outcomes indicate that one model species' sensitivity may not represent another's sensitivity.


Asunto(s)
Daphnia , Plomo , Reproducción , Contaminantes Químicos del Agua , Animales , Daphnia/fisiología , Daphnia/efectos de los fármacos , Plomo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Longevidad/efectos de los fármacos
2.
Artículo en Inglés | MEDLINE | ID: mdl-39460864

RESUMEN

Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is an herbicide used in many crops, including sugar cane cultivation. It is commonly found in aquatic ecosystem and is of high concern due to its ability to persist in the environment. Diuron metabolites include DCA (3,4-dichloroaniline) and DCPMU (3-(3,4-dichlorophenyl-1-methylurea). The objective of this study was to evaluate the effects of diuron and two of its metabolites in zebrafish (Danio rerio) developing embryos, from biochemical to individual level. Activities of the enzymes acetylcholinesterase (AChE), catalase (CAT), glutathione-S-transferase (GST), and lactate dehydrogenase (LDH) and the levels of lipid peroxidation (LPO), swimming activity, and body length were investigated after an exposure of 120 h, and the heart rate was determined after 48 h of exposure. The range of concentrations tested was 0.003-3.000 mg/L diuron, 0.020-1.500 mg/L DCA, and 0.020-2.100 mg/L DCPMU. Results showed that AChE activity was inhibited by diuron (3.000 mg/L) and DCPMU (0.326, 0.828 mg/L). However, the swimming activity of fish larvae exposed to diuron or its metabolites was not affected. The CAT was induced by DCPMU, and GST was induced by diuron. This suggests that CAT is acting to cope with oxidative stress induced by DCPMU and GST might have a role in the detoxification of diuron. In addition, larvae exposed to DCA (0.633 and 1.500 mg/L) had a reduction in their length, and larvae exposed to diuron (0.754 and 3.000 mg/L) and DCA (0.267, 0.633, and 1.500 mg/L) presented bradycardia, suggesting cardiotoxicity. Overall, results indicate that diuron, DCA, or DCPMU induces adverse effects during the early phases of zebrafish development, such as the impairment of neurotransmission and cardiovascular function and alterations in antioxidant enzymes and growth. Diuron appeared as more toxic than its metabolites since the lowest LOEC (0.012 mg/L) and higher integrated biomarker response (IBR) values were obtained with exposure to this herbicide. Furthermore, as it is fast degraded into DCA and DCPMU, which also affected the zebrafish developing embryos at environmentally relevant concentrations, its use might be of concern in ecosystems that receive agriculture runoff due to their potential adverse effects to aquatic biota.

3.
Pest Manag Sci ; 79(6): 2255-2263, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36775861

RESUMEN

BACKGROUND: Freshwater organisms are facing increasing salinity levels, not only due to natural environmental processes, but also human activities, which can cause several physiological adaptations to osmotic stress. Additionally, these organisms might also have to deal with contamination by microbial insecticides. Our main goal was to use Chironomus xanthus to assess the chronic effects of increasing the salinity and commercial formulations of the microbial insecticides based on Bacillus thuringiensis subs. kurstaki (Btk) and Beauveria bassiana (Bb) as active ingredients, respectively. RESULTS: A significant interaction of growth was observed between the biopesticide based on Bb and NaCl on the larvae of C. xanthus. Single exposure to NaCl and each one of the formulations demonstrated deleterious impacts not only on larval development, but also on the emergence success and emergence time of this nontarget insect, with potential consequences for freshwater ecosystems due to cascading effects. CONCLUSION: The chronic effects induced by both bioinsecticides show that these formulations can have environmental impacts on nontarget freshwater insects. © 2023 Society of Chemical Industry.


Asunto(s)
Bacillus thuringiensis , Beauveria , Chironomidae , Insecticidas , Animales , Humanos , Insecticidas/farmacología , Chironomidae/fisiología , Cloruro de Sodio/farmacología , Ecosistema , Insectos , Larva
4.
Environ Sci Pollut Res Int ; 29(7): 10665-10674, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34528200

RESUMEN

Bio-insecticides have been increasingly used worldwide as ecofriendly alternatives to pesticides, but data on their effects in non-target freshwater organisms is still scarce and limited to insects. The aim of this study was to determine the lethal and sub-lethal effects of the bio-insecticides Bac Control (based on Bacillus thuringiensis kurstaki-Btk) and Boveril (based on Beauveria bassiana-Bb) on regeneration, behavioral, and reproductive endpoints of the freshwater planarian Girardia tigrina. The estimated LC50-48h were > 800 mg a.i./L for Btk and 60.74 mg a.i./L for Bb. In addition, exposure to Btk significantly decreased locomotion and feeding activities of planarians (lowest observed effect concentration (LOEC) of 12.5 mg a.i./L Btk) and fecundity rate (LOEC = 3.12 mg a.i./L Btk), whereas exposure to Bb significantly delayed regeneration (LOEC = 0.75 mg a.i./L Bb) and decreased fecundity rate (1.5 mg a.i./L Bb) of planarians. Thus, both bio-insecticides induced deleterious sub-lethal effects on a non-insect freshwater invertebrate species. However, only Bb-based formulation affected the survival, fecundity rate, and regeneration at concentrations below the maximum predicted environmental concentration (PEC = 247 mg/L). Thus, care should be taken when using such formulations as alternatives to chemical insecticides near aquatic ecosystems.


Asunto(s)
Insecticidas , Planarias , Contaminantes Químicos del Agua , Animales , Ecosistema , Agua Dulce , Insectos , Insecticidas/toxicidad , Reproducción
5.
Environ Sci Pollut Res Int ; 29(18): 27095-27103, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34981389

RESUMEN

The fungicide difenoconazole, widely used to reduce the negative impacts of fungi diseases on areas with intensive farming, can reach freshwater systems causing deleterious effects on nontarget organisms. The acute and chronic toxicity of a commercial formulation containing 250 g L-1 of difenoconazole (Prisma®) as the active ingredient was assessed in the freshwater planarian Girardia tigrina. The endpoints evaluated were feeding rate, locomotion, regeneration, and sexual reproduction of planarians. The estimated 48 h LC50 of the commercial formulation on planarians expressed as the concentration of the active ingredient difenoconazole was 47.5 mg a.i.L-1. A significant decrease of locomotion (LOEC = 18.56 mg a.i.L-1), delayed regeneration (LOEC = 9.28 mg a.i.L-1), and sexual reproduction impairment, i.e., decreased fecundity and fertility rates (LOEC ≤ 1.16 mg a.i.L-1) were observed on planarians exposed to sublethal concentrations of the formulation. This study demonstrated the importance of using reproductive, physiological, and behavioral parameters as more sensitive and complementary tools to assess the deleterious effects induced by a commercial formulation of difenoconazole on a nontarget freshwater organism. The added value and importance of our research work, namely, the impairment of sexual reproduction of planarians, contributes to the development of useful tools for ecotoxicology and highlights the fact that those tools should be developed as guidelines for testing of chemicals. Our results showed that the use of reproductive parameters of Girardia tigrina would help to complement and achieve a better assessment of the risk posed by triazole fungicides to freshwater ecosystems.


Asunto(s)
Planarias , Contaminantes Químicos del Agua , Animales , Dioxolanos , Ecosistema , Ecotoxicología , Reproducción , Triazoles/toxicidad , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA