RESUMEN
Background: Triatomines are blood-feeding arthropods belonging to the subfamily Triatominae (Hemiptera; Reduviidae), capable of producing immunomodulatory and water-soluble molecules in their hemolymph, such as antimicrobial peptides (AMPs). In this work, we evaluated the antifungal and immunomodulatory activity of the hemolymph of Meccus pallidipennis (MPH) and Rhodnius prolixus (RPH) against Cryptococcus neoformans. Methods: We assessed the activity of the hemolymph of both insects on fungal growth by a minimum inhibitory concentration (MIC) assay. Further, RAW 264.7 macrophages were cultivated with hemolymph and challenged with C. neoformans. Then, their phagocytic and killing activities were assessed. The cytokines MCP-1, IFN-γ, TNF-α, IL-10, IL-12, and IL-6 were measured in culture supernatants 4- and 48-hours post-infection. Results: Both hemolymph samples directly affected the growth rate of the fungus in a dose-dependent manner. Either MPH or RPH was capable of inhibiting fungal growth by at least 70%, using the lowest dilution (1:20). Treatment of RAW 264.7 macrophages with hemolymph of both insects was capable of increasing the production of MCP-I and TNF-α. In addition, when these cells were stimulated with hemolymph in the presence of C. neoformans, a 2- and a 4-fold increase in phagocytic rate was observed with MPH and RPH, respectively, when compared to untreated cells. For the macrophage killing activity, MPH decreased in approximately 30% the number of viable yeasts inside the cells compared to untreated control; however, treatment with RPH could not reduce the total number of viable yeasts. MPH was also capable of increasing MHC-II expression on macrophages. Regarding the cytokine production, MCP-I and TNF-α, were increased in the supernatant of macrophages treated with both hemolymphs, 4 and 48 hours after stimulation. Conclusion: These results suggested that hemolymph of triatomines may represent a source of molecules capable of presenting antifungal and immunomodulatory activity in macrophages during fungal infection.
RESUMEN
Trypanosoma cruzi P21 protein (P21) is a putative secreted and immunomodulatory molecule with potent bioactive properties such as induction of phagocytosis and actin cytoskeleton polymerization. Despite the bioactive properties described so far, the action of P21 on parasite replication in muscle cell lineage or T. cruzi parasitism during acute experimental infection is unclear. We observed that recombinant P21 (rP21) decreased the multiplication of T. cruzi in C2C12 myoblasts, phenomenon associated with greater actin polymerization and IFN-γ and IL-4 higher expression. During experimental infection, lower cardiac nests, inflammatory infiltrate and fibrosis were observed in mice infected and treated with rP21. These results were correlated with large expression of IFN-γ counterbalanced by high levels of IL-10, which was consistent with the lower cardiac tissue injury found in these mice. We have also observed that upon stress, such as that induced by the presence of the IFN-γ cytokine, T. cruzi produced more P21. The effect of P21 in controlling the replication of T. cruzi, may indicate an evolutionary mechanism of survival developed by the parasite. Thus, when subjected to different stress conditions, the protozoan produces more P21, which induces T. cruzi latency in the host organism, enabling the protozoan to evade the host's immune system.