Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 29(2): 1371-1383, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726354

RESUMEN

We propose and experimentally demonstrate a modular microring laser (MML) cavity for sensing applications. The proposed MML permits much more design freedom compared with a traditional simple ring cavity by decoupling the performance parameters into several regions in the cavity. Thus, the different biosensor performance parameters can be optimized semi-independently limiting the need for trade-offs on the design of the biosensing device. The first generation MML has been fabricated and tested. A fiber-to-fiber slope efficiency of up to 1.2%, a temperature coefficient of 1.35 GHz/K and a 3σ limit of detection (LOD) of 3.1 × 10-7 RIU without averaging and 6.0 × 10-8 RIU with a 60 s averaging, has been measured for the MML sensor, which is a record-low LOD in on-chip ring cavity optical sensors. Further optimization is possible, capitalizing on the key advantage of the MML concept, namely the potential for designing the laser cavity to achieve the desired optimization goals.

2.
Opt Express ; 27(16): 23067-23079, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510589

RESUMEN

Nanophotonic waveguide enhanced Raman spectroscopy (NWERS) is a sensing technique that uses a highly confined waveguide mode to excite and collect the Raman scattered signal from molecules in close vicinity of the waveguide. The most important parameters defining the figure of merit of an NWERS sensor include its ability to collect the Raman signal from an analyte, i.e. "the Raman conversion efficiency" and the amount of "Raman background" generated from the guiding material. Here, we compare different photonic integrated circuit (PIC) platforms capable of on-chip Raman sensing in terms of the aforementioned parameters. Among the four photonic platforms under study, tantalum oxide and silicon nitride waveguides exhibit high signal collection efficiency and low Raman background. In contrast, the performance of titania and alumina waveguides suffers from a strong Raman background and a weak signal collection efficiency, respectively.

3.
Opt Lett ; 44(24): 5937-5940, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32628191

RESUMEN

Whispering gallery mode resonator lasers hold the promise of an ultralow intrinsic limit of detection. However, the widespread use of these devices for biosensing applications has been hindered by the complexity and lack of robustness of the proposed configurations. In this work, we demonstrate biosensing with an integrated microdisk laser. Al2O3doped with Yb3+ was utilized because of its low optical losses as well as its emission in the range 1020-1050 nm, outside the absorption band of water. Single-mode laser emission was obtained at a wavelength of 1024 nm with a linewidth of 250 kHz while the microdisk cavity was submerged in water. A limit of detection of 300 pM (3.6 ng/ml) of the protein rhS100A4 in urine was experimentally demonstrated, showing the potential of the proposed devices for biosensing.


Asunto(s)
Óxido de Aluminio/química , Técnicas Biosensibles/instrumentación , Dispositivos Laboratorio en un Chip , Rayos Láser , Iterbio/química
4.
Nanoscale ; 9(2): 684-689, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27957576

RESUMEN

Three-dimensional (3D) characterization of nanomaterials is traditionally performed by either cross-sectional milling with a focused ion beam (FIB), or transmission electron microscope tomography. While these techniques can produce high quality reconstructions, they are destructive, or require thin samples, often suspended on support membranes. Here, we demonstrate a complementary technique allowing non-destructive investigation of the 3D structure of samples on bulk substrates. This is performed by imaging backscattered electron (BSE) emission at multiple primary beam energies - as the penetration depth of primary electrons is proportional to the beam energy, depth information can be obtained through variations in the beam acceleration. The detected signal however consists of a mixture of the penetrated layers, meaning the structure's three-dimensional geometry can only be retrieved after deconvolving the BSE emission profile from the observed BSE images. This work demonstrates this novel approach by applying a blind source separation deconvolution algorithm to multi-energy acquired BSE images. The deconvolution can thereby allow a 3D reconstruction to be produced from the acquired images of an arbitrary sample, showing qualitative agreement with the true depth structure, as verified through FIB cross-sectional imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA