Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 10824, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752734

RESUMEN

From hillslope to small catchment scales (< 50 km2), soil carbon management and mitigation policies rely on estimates and projections of soil organic carbon (SOC) stocks. Here we apply a process-based modeling approach that parameterizes the MIcrobial-MIneral Carbon Stabilization (MIMICS) model with SOC measurements and remotely sensed environmental data from the Reynolds Creek Experimental Watershed in SW Idaho, USA. Calibrating model parameters reduced error between simulated and observed SOC stocks by 25%, relative to the initial parameter estimates and better captured local gradients in climate and productivity. The calibrated parameter ensemble was used to produce spatially continuous, high-resolution (10 m2) estimates of stocks and associated uncertainties of litter, microbial biomass, particulate, and protected SOC pools across the complex landscape. Subsequent projections of SOC response to idealized environmental disturbances illustrate the spatial complexity of potential SOC vulnerabilities across the watershed. Parametric uncertainty generated physicochemically protected soil C stocks that varied by a mean factor of 4.4 × across individual locations in the watershed and a - 14.9 to + 20.4% range in potential SOC stock response to idealized disturbances, illustrating the need for additional measurements of soil carbon fractions and their turnover time to improve confidence in the MIMICS simulations of SOC dynamics.


Asunto(s)
Carbono , Suelo , Biomasa , Clima
2.
G3 (Bethesda) ; 12(7)2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35567476

RESUMEN

Increased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata; Asteraceae), which was once the dominant shrub over 1,000,000 km2 in western North America but has since retracted by half and thus has become the target of one of the largest restoration seeding efforts globally. Here, we present the first reference-quality genome assembly for an ecologically important subspecies of big sagebrush (A. tridentata subsp. tridentata) based on short and long reads, as well as chromatin proximity ligation data analyzed using the HiRise pipeline. The final 4.2-Gb assembly consists of 5,492 scaffolds, with nine pseudo-chromosomal scaffolds (nine scaffolds comprising at least 90% of the assembled genome; n = 9). The assembly contains an estimated 43,377 genes based on ab initio gene discovery and transcriptional data analyzed using the MAKER pipeline, with 91.37% of BUSCOs being completely assembled. The final assembly was highly repetitive, with repeat elements comprising 77.99% of the genome, making the Artemisia tridentata subsp. tridentata genome one of the most highly repetitive plant genomes to be sequenced and assembled. This genome assembly advances studies on plant adaptation to drought and heat stress and provides a valuable tool for future genomic research.


Asunto(s)
Artemisia , Artemisia/genética , Cromosomas , Cambio Climático , Haploidia , América del Norte
3.
Front Plant Sci ; 12: 636709, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149744

RESUMEN

Agricultural cropping systems and pasture comprise one third of the world's arable land and have the potential to draw down a considerable amount of atmospheric CO2 for storage as soil organic carbon (SOC) and improving the soil carbon budget. An improved soil carbon budget serves the dual purpose of promoting soil health, which supports crop productivity, and constituting a pool from which carbon can be converted to recalcitrant forms for long-term storage as a mitigation measure for global warming. In this perspective, we propose the design of crop ideotypes with the dual functionality of being highly productive for the purposes of food, feed, and fuel, while at the same time being able to facilitate higher contribution to soil carbon and improve the below ground ecology. We advocate a holistic approach of the integrated plant-microbe-soil system and suggest that significant improvements in soil carbon storage can be achieved by a three-pronged approach: (1) design plants with an increased root strength to further allocation of carbon belowground; (2) balance the increase in belowground carbon allocation with increased source strength for enhanced photosynthesis and biomass accumulation; and (3) design soil microbial consortia for increased rhizosphere sink strength and plant growth-promoting (PGP) properties.

4.
New Phytol ; 188(4): 1055-64, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21058948

RESUMEN

Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g(-1) soil) to soils amended with and without (13) C-labeled plant residue. We measured CO(2) respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g(-1)) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g(-1)) had no impact on plant residue decomposition, while greater concentrations of C (>7.2 mg C g(-1)) reduced decomposition (-50%). Concurrently, high exudate concentrations (>3.6 mg C g(-1)) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (<3.6 mg C g(-1)) increased metabolic activity rather than gene copy numbers. These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.


Asunto(s)
Carbono/metabolismo , Panicum/metabolismo , Microbiología del Suelo , Suelo/análisis , Bacterias/efectos de los fármacos , Bacterias/genética , Biodegradación Ambiental/efectos de los fármacos , Carbono/farmacología , Dióxido de Carbono/metabolismo , Respiración de la Célula/efectos de los fármacos , Hongos/efectos de los fármacos , Hongos/genética , Dosificación de Gen/efectos de los fármacos , Panicum/citología , Panicum/efectos de los fármacos
5.
Glob Change Biol Bioenergy ; 8(5): 1000-1014, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27668013

RESUMEN

The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008-2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars - under low or high species diversity, with or without nitrogen inputs - and quantified establishment, biomass yield, and biomass composition. In one experiment ('agronomic trial'), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment ('diversity gradient'), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.

6.
New Phytol ; 173(4): 778-786, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17286826

RESUMEN

With this study, we aimed to determine how elevated CO(2) affects rhizodeposition and the cycling of rhizodeposited nitrogen (N) in the soil under C(3) and C(4) plants. In addition, we examined how cultivated genotypes of wheat (Triticum turgidum) and maize (Zea mays) responded to elevated CO(2) in comparison with their wild relatives. By constructing an N-transfer experiment we could directly assess cycling of the rhizodeposited N and trace the fate of rhizodeposited N in the soil and in receiver plants. Biomass production, rhizodeposition and cycling of root-borne N in maize genotypes were not affected by elevated CO(2). Elevated CO(2) stimulated above- and below-ground biomass production of the wheat genotypes on average by 38%, and increased rhizodeposition and immobilization of root-derived N on average by 30%. Concurrently, elevated CO(2) reduced mineral (15)N and re-uptake of the root-derived N by 50% in wheat. This study shows that elevated CO(2) may enhance N limitation by increasing N rhizodeposition and subsequent immobilization of the root-derived N.


Asunto(s)
Dióxido de Carbono , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Microbiología del Suelo , Atmósfera , Biomasa , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Isótopos de Nitrógeno/metabolismo , Raíces de Plantas/microbiología , Triticum/metabolismo , Triticum/microbiología , Zea mays/metabolismo , Zea mays/microbiología
7.
Proc Natl Acad Sci U S A ; 103(17): 6571-4, 2006 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-16614072

RESUMEN

Rising levels of atmospheric CO2 are thought to increase C sinks in terrestrial ecosystems. The potential of these sinks to mitigate CO2 emissions, however, may be constrained by nutrients. By using metaanalysis, we found that elevated CO2 only causes accumulation of soil C when N is added at rates well above typical atmospheric N inputs. Similarly, elevated CO2 only enhances N2 fixation, the major natural process providing soil N input, when other nutrients (e.g., phosphorus, molybdenum, and potassium) are added. Hence, soil C sequestration under elevated CO2 is constrained both directly by N availability and indirectly by nutrients needed to support N2 fixation.


Asunto(s)
Carbono/análisis , Suelo/análisis , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ecosistema , Efecto Invernadero , Nitrógeno/análisis , Nitrógeno/metabolismo , Fijación del Nitrógeno , Desarrollo de la Planta , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA