Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895439

RESUMEN

Lysosomes catabolize lipids and other biological molecules, a function essential for cellular and organismal homeostasis. Key to lipid catabolism in the lysosome is bis(monoacylglycero)phosphate (BMP), a major lipid constituent of intralysosomal vesicles (ILVs) and a stimulator of lipid-degrading enzymes. BMP levels are altered in a broad spectrum of human conditions, including neurodegenerative diseases. Although BMP synthase was recently discovered, it has long been thought that BMP's unique stereochemistry confers resistance to acid phospholipases, a requirement for its role in the lysosome. Here, we demonstrate that PLA2G15, a major lysosomal phospholipase, efficiently hydrolyzes BMP with primary esters regardless of stereochemistry. Interestingly, we discover that BMP's unique esterification position is what confers resistance to hydrolysis. Purified PLA2G15 catabolizes most BMP species derived from cell and tissue lysosomes under acidic conditions. Furthermore, PLA2G15 catalytic activity against synthesized BMP stereoisomers with primary esters was comparable to its canonical substrates. Conversely, BMP with secondary esters is intrinsically stable in vitro and requires acyl migration for hydrolysis in lysosomes. Consistent with our biochemical data, PLA2G15-deficient tissues and cells accumulate multiple BMP species, a phenotype reversible by supplementing wildtype PLA2G15 but not its catalytically dead mutant. Increasing BMP levels by targeting PLA2G15 reverses the cholesterol accumulation phenotype in Niemann Pick Disease Type C (NPC1) patient fibroblasts and significantly ameliorate disease pathologies in NPC1-deficient mice leading to extended lifespan. Our findings establish the rules that govern the stability of BMP in the lysosome and identify PLA2G15 as a lysosomal BMP hydrolase and as a potential target for modulating BMP levels for therapeutic intervention.

2.
Elife ; 3: e03011, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25097249

RESUMEN

In presynaptic boutons, calcium (Ca(2+)) triggers both neurotransmitter release and short-term synaptic plasticity. Whereas synaptotagmins are known to mediate vesicle fusion through binding of high local Ca(2+) to their C2 domains, the proteins that sense smaller global Ca(2+) increases to produce short-term plasticity have remained elusive. Here, we identify a Ca(2+) sensor for post-tetanic potentiation (PTP), a form of plasticity thought to underlie short-term memory. We find that at the functionally mature calyx of Held synapse the Ca(2+)-dependent protein kinase C isoforms α and ß are necessary for PTP, and the expression of PKCß in PKCαß double knockout mice rescues PTP. Disruption of Ca(2+) binding to the PKCß C2 domain specifically prevents PTP without impairing other PKCß-dependent forms of synaptic enhancement. We conclude that different C2-domain-containing presynaptic proteins are engaged by different Ca(2+) signals, and that Ca(2+) increases evoked by tetanic stimulation are sensed by PKCß to produce PTP.DOI: http://dx.doi.org/10.7554/eLife.03011.001.


Asunto(s)
Señalización del Calcio/fisiología , Plasticidad Neuronal/fisiología , Proteína Quinasa C beta/metabolismo , Proteína Quinasa C-alfa/metabolismo , Animales , Tronco Encefálico/metabolismo , Femenino , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Neurológicos , Terminales Presinápticos/metabolismo , Proteína Quinasa C beta/deficiencia , Proteína Quinasa C beta/genética , Proteína Quinasa C-alfa/deficiencia , Proteína Quinasa C-alfa/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA