RESUMEN
The cowpea weevil (Callosobruchus maculatus) is the main pest that attacks cowpea (Vigna unguiculata) seeds during storage, causing nutritional and economic losses in the cowpea crop. Thus, studies aiming to identify resistant cowpea cultivars have been developed. Chitin-binding proteins (CBP), such vicilins and chitinases, have been detected in seeds and related with the toxicity to insects. In this work, we investigated the presence of chitin-binding proteins in the partially resistant cowpea cv. BRS Xiquexique and evaluated their toxicity towards cowpea weevil. The CBP fraction was isolated by chitin affinity chromatography. CBP fraction showed, through 15% SDS PAGE, protein bands with varying molecular masses, mainly below 55â¯kDa. Proteins present in CBP fraction were identified by Western blotting and mass spectrometry analysis, as vicilins and chitinases. CBP fraction, at 5%, was able to interfere with the development of cowpea weevil, decreasing larval mass and length. A CBV (chitin-binding vicilin) fraction isolated from CBP fraction was toxic, at 2.0%, to C. maculatus, decreasing larval mass and length in 64.3% and 33.23%, respectively. These results suggest that chitin binding proteins, such vicilins and chitinases, may be related to the resistance of cowpea cv. BRS Xiquexique to the infestation by C. maculatus.
Asunto(s)
Escarabajos , Vigna , Gorgojos , Animales , Proteínas Portadoras , Quitina/metabolismo , Escarabajos/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Vigna/metabolismo , Gorgojos/metabolismoRESUMEN
INTRODUCTION: Diabetes mellitus (DM), an important public health problem worldwide, can cause imbalances in the homeostasis of trace elements such as zinc (Zn). It is possible that an adequate nutritional status related to nutrients is essential for the normal functioning of antioxidant defense systems, and any change in the concentration of these substances could increase the chances of DM complications. OBJECTIVE: To present a review on the effect of zinc supplementation on glycemic control and oxidative stress in experimental diabetes. METHODS: This is a systematic review of articles that investigated the effects of zinc supplementation on glycemic control and oxidative stress in diabetic rats. The PICOS strategy was used for the development of the research question, and the Syrcle tool for the quality assessment of the studies included in the review. Articles available in the PubMed, Scopus, and Web of Science databases were included without restriction on year of publication. The Syrcle tool was used to assess the risk of bias of the included studies. RESULTS: Fifteen studies were included in the review, seven of which evaluated glycemic control and oxidative stress after zinc supplementation, five only oxidative stress and three only glycemic control after zinc treatment. In all the studies included, diabetes was induced by the administration of streptozotocin (STZ) at doses ranging from 40 to 100 mg/kg. Zinc supplementation was made in the diet or drinking water or by gavage or intraperitoneal injection. The most used doses were 100 mg/kg of body weight by gavage and 0.32 and 0.64 g/kg in diet. The supplementation period ranged from 14 days to 8 weeks. Six studies revealed that zinc supplementation decreased fasting blood glucose as well as insulin resistance; nine studies included in this review reported decreased MDA concentration; in five studies, there was an increase in the activity of antioxidant enzymes (GPx, SOD, GSH and catalase); and one of the studies reported a reduction in glycated hemoglobin. CONCLUSION: Zinc supplementation improved hyperglycemia and revealed a protective potential against oxidative stress associated with experimental diabetes.
Asunto(s)
Diabetes Mellitus Experimental , Agua Potable , Oligoelementos , Animales , Antioxidantes , Glucemia , Catalasa/metabolismo , Catalasa/farmacología , Catalasa/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Suplementos Dietéticos , Hemoglobina Glucada , Control Glucémico , Estrés Oxidativo , Ratas , Estreptozocina/farmacología , Estreptozocina/uso terapéutico , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/farmacología , Oligoelementos/uso terapéutico , ZincRESUMEN
Plant breeding reduces the genetic diversity of plants and could influence the composition, structure, and diversity of the rhizosphere microbiome, selecting more homogeneous and specialized microbes. In this study, we used 16S rRNA sequencing to assess the bacterial community in the rhizosphere of different lines and modern cowpea cultivars, to investigate the effect of cowpea breeding on bacterial community assembly. Thus, two African lines (IT85F-2687 and IT82D-60) and two Brazilian cultivars (BRS-Guariba and BRS-Tumucumaque) of cowpea were assessed to verify if the generation advance and genetic breeding influence the bacterial community in the rhizosphere. No significant differences were found in the structure, richness, and diversity of bacterial community structure between the rhizosphere of the different cowpea genotypes, and only slight differences were found at the OTU level. The complexity of the co-occurrence network decreased from African lines to Brazilian cultivars. Regarding functional prediction, the core functions were significantly altered according to the genotypes. In general, African lines presented a more abundance of groups related to chemoheterotrophy, while the rhizosphere of the modern cultivars decreased functions related to cellulolysis. This study showed that the genetic breeding process affects the dynamics of the rhizosphere community, decreasing the complexity of interaction in one cultivar. As these cowpea genotypes are genetically related, it could suggest a new hypothesis of how genetic breeding of similar genotypes could influence the rhizosphere microbiome.