RESUMEN
BACKGROUND: Photobiomodulation therapy (PBMT) using low-level laser influences the release of several growth factors involved in the formation of epithelial cells, fibroblasts, collagen and vascular proliferation, besides accelerating the synthesis of bone matrix due to the increased vascularization and lower inflammatory response, with significant increase of osteocytes in the irradiated bone. Considering its properties, beneficial effects and clinical relevance, the aim of this review was to analyze the scientific literature regarding the use of PBMT in the process of bone defect repair. METHODS: Electronic search was carried out in PubMed/MEDLINEâ and Web of Science databases with combination of the descriptors low-level laser therapy AND bone repair, considering the period of publication until the year 2018. RESULTS: The literature search identified 254 references in PubMed/MEDLINE and 204 in Web of Science, of which 33 and 4 were selected, respectively, in accordance with the eligibility requirements. The analysis of researches showed articles using PBMT in several places of experimentation in the subjects, different types of associated biomaterials, stimulatory effects on cell proliferation, besides variations in the parameters of use of laser therapy, mainly in relation to the wavelength and density of energy. Only four articles reported that the laser did not improve the osteogenic properties of a biomaterial. CONCLUSIONS: Many studies have shown that PBMT has positive photobiostimulatory effects on bone regeneration, accelerating its process regardless of parameters and the use of biomaterials. However, standardization of its use is still imperfect and should be better studied to allow correct application concerning the utilization protocols.
Asunto(s)
Regeneración Ósea/efectos de la radiación , Proliferación Celular/efectos de la radiación , Curación de Fractura/efectos de la radiación , Fracturas Óseas/radioterapia , Terapia por Luz de Baja Intensidad , Osteogénesis/efectos de la radiación , Regeneración Ósea/fisiología , Colágeno/metabolismo , Fibroblastos/metabolismo , Curación de Fractura/fisiología , Fracturas Óseas/fisiopatología , Humanos , Terapia por Luz de Baja Intensidad/métodos , Osteogénesis/fisiologíaRESUMEN
This study evaluated the effect of ethanol on the repair in calvaria treated with beta-tricalcium phosphate (ß-TCP). Forty rats were distributed into 2 groups: Water group (CG, n = 20) and Alcohol Group (AG, n = 20), which received 25% ethanol ad libitum after an adaptation period of 3 weeks. After 90 days of liquid diet, the rats were submitted to a 5.0 mm bilateral craniotomy in the parietal bones; the left parietal was filled with ß-TCP (CG-TCP and AG-TCP) and the contralateral only with blood clot (CG-Clot and AG-Clot). The animals were killed after 10, 20, 40 and 60 days. The groups CG-Clot and AG-Clot showed similar pattern of bone formation with a gradual and significant increase in the amount of bone in CG-Clot (22.17 ± 3.18 and 34.81 ± 5.49) in relation to AG-Clot (9.35 ± 5.98 and 21.65 ± 6.70) in periods of 20-40 days, respectively. However, in the other periods there was no statistically significant difference. Alcohol ingestion had a negative influence on bone formation, even with the use of ß-TCP, exhibiting slow resorption and replacement by fibrous tissue, with 16% of bone formation within 60 days in AG-TCP, exhibiting immature bone tissue with predominance of disorganized collagen fibers. Defects in CG-TCP showed bone tissue with predominance of lamellar arrangement filling 39% of the original defect. It can be concluded that chronic ethanol consumption impairs the ability to repair bone defects, even with the use of a ß-TCP biomaterial.