Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(1): e0186423, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38078763

RESUMEN

Biodesulfurization (BD) systems that treat sour gas employ mixtures of haloalkaliphilic sulfur-oxidizing bacteria to convert sulfide to elemental sulfur. In the past years, these systems have seen major technical innovations that have led to changes in microbial community composition. Different studies have identified and discussed the microbial communities in both traditional and improved systems. However, these studies do not identify metabolically active community members and merely focus on members' presence/absence. Therefore, their results cannot confirm the activity and role of certain bacteria in the BD system. To investigate the active community members, we determined the microbial communities of six different runs of a pilot-scale BD system. 16S rRNA gene-based amplicon sequencing was performed using both DNA and RNA. A comparison of the DNA- and RNA-based sequencing results identified the active microbes in the BD system. Statistical analyses indicated that not all the existing microbes were actively involved in the system and that microbial communities continuously evolved during the operation. At the end of the run, strains affiliated with Alkalilimnicola ehrlichii and Thioalkalivibrio sulfidiphilus were confirmed as the most active key bacteria in the BD system. This study determined that microbial communities were shaped predominantly by the combination of hydraulic retention time (HRT) and sulfide concentration in the anoxic reactor and, to a lesser extent, by other operational parameters.IMPORTANCEHaloalkaliphilic sulfur-oxidizing bacteria are integral to biodesulfurization (BD) systems and are responsible for converting sulfide to sulfur. To understand the cause of conversions occurring in the BD systems, knowing which bacteria are present and active in the systems is essential. So far, only a few studies have investigated the BD system's microbial composition, but none have identified the active microbial community. Here, we reveal the metabolically active community, their succession, and their influence on product formation.


Asunto(s)
Bacterias , Sulfuros , ARN Ribosómico 16S/genética , Bacterias/genética , ADN , Azufre , Oxidación-Reducción
2.
Environ Sci Technol ; 57(36): 13530-13540, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37639370

RESUMEN

Removal of hydrogen sulfide (H2S) can be achieved using the sustainable biological desulfurization process, where H2S is converted to elemental sulfur using sulfide-oxidizing bacteria (SOB). A dual-bioreactor process was recently developed where an anaerobic (sulfidic) bioreactor was used between the absorber column and micro-oxic bioreactor. In the absorber column and sulfidic bioreactor, polysulfides (Sx2-) are formed due to the chemical equilibrium between H2S and sulfur (S8). Sx2- is thought to be the intermediate for SOB to produce sulfur via H2S oxidation. In this study, we quantify Sx2-, determine their chain-length distribution under high H2S loading rates, and elucidate the relationship between biomass and the observed biological removal of sulfides under anaerobic conditions. A linear relationship was observed between Sx2- concentration and H2S loading rates at a constant biomass concentration. Increasing biomass concentrations resulted in a lower measured Sx2- concentration at similar H2S loading rates in the sulfidic bioreactor. Sx2- of chain length 6 (S62-) showed a substantial decrease at higher biomass concentrations. Identifying Sx2- concentrations and their chain lengths as a function of biomass concentration and the sulfide loading rate is key in understanding and controlling sulfide uptake by the SOB. This knowledge will contribute to a better understanding of how to reach and maintain a high selectivity for S8 formation in the dual-reactor biological desulfurization process.


Asunto(s)
Sulfuro de Hidrógeno , Sulfuros , Biomasa , Azufre
3.
Environ Sci Technol ; 53(8): 4519-4527, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30882225

RESUMEN

In the biotechnological desulfurization process under haloalkaline conditions, dihydrogen sulfide (H2S) is removed from sour gas and oxidized to elemental sulfur (S8) by sulfide-oxidizing bacteria. Besides S8, the byproducts sulfate (SO42-) and thiosulfate (S2O32-) are formed, which consume caustic and form a waste stream. The aim of this study was to increase selectivity toward S8 by a new process line-up for biological gas desulfurization, applying two bioreactors with different substrate conditions (i.e., sulfidic and microaerophilic), instead of one (i.e., microaerophilic). A 111-day continuous test, mimicking full scale operation, demonstrated that S8 formation was 96.6% on a molar H2S supply basis; selectivity for SO42- and S2O32- were 1.4 and 2.0% respectively. The selectivity for S8 formation in a control experiment with the conventional 1-bioreactor line-up was 75.6 mol %. At start-up, the new process line-up immediately achieved lower SO42- and S2O32- formations compared to the 1-bioreactor line-up. When the microbial community adapted over time, it was observed that SO42- formation further decreased. In addition, chemical formation of S2O32- was reduced due to biologically mediated removal of sulfide from the process solution in the anaerobic bioreactor. The increased selectivity for S8 formation will result in 90% reduction in caustic consumption and waste stream formation compared to the 1-bioreactor line-up.


Asunto(s)
Reactores Biológicos , Tiosulfatos , Oxidación-Reducción , Sulfatos , Sulfuros , Azufre
4.
Water Res ; 259: 121795, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38889663

RESUMEN

Biological desulfurization under haloalkaline conditions has been applied worldwide to remove hydrogen sulfide (H2S) from sour gas steams. The process relies on sulfide-oxidizing bacteria (SOB) to oxidize H2S to elemental sulfur (S8), which can then be recovered and reused. Recently, a dual-reactor biological desulfurization system was implemented where an anaerobic (sulfidic) bioreactor was incorporated as an addition to a micro-oxic bioreactor, allowing for higher S8 selectivity by limiting by-product formation. The highly sulfidic bioreactor environment enabled the SOB to remove (poly)sulfides (Sx2-) in the absence of oxygen, with Sx2- speculated as a main substrate in the removal pathway, thus making it vital to understand its role in the process. The SOB are influenced by the oxidation-reduction potential (ORP) set-point of the micro-oxic bioreactor as it is used to control the product of oxidation (S8 vs. SO42-), while the uptake of Sx2- by SOB has been qualitatively linked to pH. Therefore, to quantify these effects, this work determined the concentration and speciation of Sx2- in the biological desulfurization process under various pH values and ORP set-points. The total Sx2- concentrations in the sulfidic zone increased at elevated pH (8.9) compared to low pH (< 8.0), with on average 3.3 ± 1.0 mM-S more Sx2-. Chain lengths varied, with S72- only doubling in concentration while S52- increased 9 fold, which is in contrast with observations from abiotic systems. Changes to the ORP set-point of the micro-oxic reactor did not produce substantial changes in Sx2- concentration in the sulfidic zone. This illustrates that the reduction degree of the SOB in the micro-oxic bioreactor does not enhance their ability to interact with Sx2- in the sulfidic bioreactor. This increased understanding of how both pH and ORP affect changes in Sx2- concentration and chain length can lead to improved efficiency and design of the dual-reactor biological desulfurization process.


Asunto(s)
Reactores Biológicos , Oxidación-Reducción , Sulfuros , Azufre , Sulfuros/química , Sulfuros/metabolismo , Concentración de Iones de Hidrógeno , Sulfuro de Hidrógeno/metabolismo
5.
J Hazard Mater ; 424(Pt A): 127358, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879559

RESUMEN

Sulfide oxidizing bacteria (SOB) are widely applied in industry to convert toxic H2S into elemental sulfur. Haloalkaliphilic planktonic SOB can remove sulfide from solution under anaerobic conditions (SOB are 'charged'), and release electrons at an electrode (discharge of SOB). The effect of this electron shuttling on product formation and biomass growth is not known. Here, we study and demonstrate a continuous process in which SOB remove sulfide from solution in an anaerobic 'uptake chamber', and shuttle these electrons to the anode of an electrochemical cell, in the absence of dissolved sulfide. Two experiments over 31 and 41 days were performed. At a sulfide loading rate of 1.1 mmolS/day, electricity was produced continuously (3 A/m2) without dissolved sulfide in the anolyte. The main end product was sulfate (56% in experiment 1% and 78% in experiment 2), and 87% and 77% of the electrons in sulfide were recovered as electricity. It was found that the current density was dependent on the sulfide loading rate and not on the anode potential. Biological growth occurred, mainly at the anode as biofilm, in which the deltaproteobacterial genus Desulfurivibrio was dominating. Our results demonstrate a novel strategy to produce electricity from sulfide in an electrochemical system.


Asunto(s)
Electrones , Sulfuro de Hidrógeno , Bacterias , Reactores Biológicos , Electricidad , Oxidación-Reducción , Sulfuros
6.
J Hazard Mater ; 383: 121104, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31586887

RESUMEN

We studied a biotechnological desulfurization process for removal of toxic hydrogen sulfide (H2S) from sour gas. The process consists of two steps: i) Selective absorption of H2S into a (bi)carbonate solution in the absorber column and ii) conversion of sulfide to sulfur by sulfide oxidizing bacteria (SOB) in the aerated bioreactor. In previous studies, several physico-chemical factors were assessed to explain the observed enhancement of H2S absorption in the absorber, but a full explanation was not provided. We investigated the relation between the metabolic activity of SOB and the enhancement factor. Two continuous experiments on pilot-scale were performed to determine H2S absorption efficiencies at different temperatures and biomass concentrations. The absorption efficiency improved at increasing temperatures, i.e. H2S concentration in the treated gas decreased from 715 ±â€¯265 ppmv at 25.4 °C to 69 ±â€¯25 ppmv at 39.4 °C. The opposite trend is expected when H2S absorption is solely determined by physico-chemical factors. Furthermore, increasing biomass concentrations to the absorber also resulted in decreased H2S concentrations in the treated gas, from approximately 6000 ppmv without biomass to 1664 ±â€¯126 ppmv at 44 mg N/L. From our studies it can be concluded that SOB activity enhances H2S absorption and leads to increased H2S removal efficiencies in biotechnological gas desulfurization.


Asunto(s)
Álcalis/química , Gases/química , Halógenos/química , Sulfuro de Hidrógeno/química , Anaerobiosis , Bacterias/metabolismo , Azufre/aislamiento & purificación
7.
Environ Sci Technol Lett ; 5(8): 495-499, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30135862

RESUMEN

Biological desulfurization under haloalkaliphilic conditions is a widely applied process, in which haloalkalophilic sulfide-oxidizing bacteria (SOB) oxidize dissolved sulfide with oxygen as the final electron acceptor. We show that these SOB can shuttle electrons from sulfide to an electrode, producing electricity. Reactor solutions from two different biodesulfurization installations were used, containing different SOB communities; 0.2 mM sulfide was added to the reactor solutions with SOB in absence of oxygen, and sulfide was removed from the solution. Subsequently, the reactor solutions with SOB, and the centrifuged reactor solutions without SOB, were transferred to an electrochemical cell, where they were contacted with an anode. Charge recovery was studied at different anode potentials. At an anode potential of +0.1 V versus Ag/AgCl, average current densities of 0.48 and 0.24 A/m2 were measured for the two reactor solutions with SOB. Current was negligible for reactor solutions without SOB. We postulate that these differences in current are related to differences in microbial community composition. Potential mechanisms for charge storage in SOB are proposed. The ability of SOB to shuttle electrons from sulfide to an electrode offers new opportunities for developing a more sustainable desulfurization process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA