Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2401776, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031853

RESUMEN

The presence of hierarchical suppressive pathways in the immune system combined with poor delivery efficiencies of adjuvants and antigens to antigen-presenting cells are major challenges in developing advanced vaccines. The present study reports a nanoadjuvant constructed using aluminosilicate nanoparticles (as particle templates), incorporating cytosine-phosphate-guanosine (CpG) oligonucleotides and small-interfering RNA (siRNA) to counteract immune suppression in antigen-presenting cells. Furthermore, the application of a metal-phenolic network (MPN) coating, which can endow the nanoparticles with protective and bioadhesive properties, is assessed with regard to the stability and immune function of the resulting nanoadjuvant in vitro and in vivo. Combining the adjuvanticity of aluminum and CpG with RNA interference and MPN coating results in a nanoadjuvant that exhibits greater accumulation in lymph nodes and elicits improved maturation of dendritic cells in comparison to a formulation without siRNA or MPN, and with no observable organ toxicity. The incorporation of a model antigen, ovalbumin, within the MPN coating demonstrates the capacity of MPNs to load functional biomolecules as well as the ability of the nanoadjuvant to trigger enhanced antigen-specific responses. The present template-assisted fabrication strategy for engineering nanoadjuvants holds promise in the design of delivery systems for disease prevention, as well as therapeutics.

2.
Angew Chem Int Ed Engl ; 63(12): e202319583, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38282100

RESUMEN

Small molecules, including therapeutic drugs and tracer molecules, play a vital role in biological processing, disease treatment and diagnosis, and have inspired various nanobiotechnology approaches to realize their biological function, particularly in drug delivery. Desirable features of a delivery system for functional small molecules (FSMs) include high biocompatibility, high loading capacity, and simple manufacturing processes, without the need for chemical modification of the FSM itself. Herein, we report a simple and versatile approach, based on metal-phenolic-mediated assembly, for assembling FSMs into nanoparticles (i.e., FSM-MPN NPs) under aqueous and ambient conditions. We demonstrate loading of anticancer drugs, latency reversal agents, and fluorophores at up to ~80 % that is mostly facilitated by π and hydrophobic interactions between the FSM and nanoparticle components. Secondary nanoparticle engineering involving coating with a polyphenol-antibody thin film or sequential co-loading of multiple FSMs enables cancer cell targeting and combination delivery, respectively. Incorporating fluorophores into FSM-MPN NPs enables the visualization of biodistribution at different time points, revealing that most of these NPs are retained in the kidney and heart 24 h post intravenous administration. This work provides a viable pathway for the rational design of small molecule nanoparticle delivery platforms for diverse biological applications.


Asunto(s)
Nanopartículas , Distribución Tisular , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Fenoles , Polifenoles , Metales
3.
Angew Chem Int Ed Engl ; 62(12): e202214935, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36700351

RESUMEN

DNA-based materials have attracted interest due to the tunable structure and encoded biological functionality of nucleic acids. A simple and general approach to synthesize DNA-based materials with fine control over morphology and bioactivity is important to expand their applications. Here, we report the synthesis of DNA-based particles via the supramolecular assembly of tannic acid (TA) and DNA. Uniform particles with different morphologies are obtained using a variety of DNA building blocks. The particles enable the co-delivery of cytosine-guanine adjuvant sequences and the antigen ovalbumin in model cells. Intramuscular injection of the particles in mice induces antigen-specific antibody production and T cell responses with no apparent toxicity. Protein expression in cells is shown using capsules assembled from TA and plasmid DNA. This work highlights the potential of TA as a universal material for directing the supramolecular assembly of DNA into gene and vaccine delivery platforms.


Asunto(s)
Adyuvantes Inmunológicos , Polifenoles , Ratones , Animales , Adyuvantes Inmunológicos/química , Antígenos , Sistemas de Liberación de Medicamentos , ADN/química
4.
Eur J Immunol ; 45(3): 854-64, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25487143

RESUMEN

Targeting antigens to dendritic cell (DC) surface receptors using antibodies has been successfully used to generate strong immune responses and is currently in clinical trials for cancer immunotherapy. Whilst cancer immunotherapy focuses on the induction of CD8(+) T-cell responses, many successful vaccines to pathogens or their toxins utilize humoral immunity as the primary effector mechanism. Universally, these approaches have used adjuvants or pathogen material that augment humoral responses. However, adjuvants are associated with safety issues. One approach, successfully used in the mouse, to generate strong humoral responses in the absence of adjuvant is to target antigen to Clec9A, also known as DNGR-1, a receptor on CD8α(+) DCs. Here, we address two issues relating to clinical application. First, we address the issue of variable adjuvant-dependence for different antibodies targeting mouse Clec9A. We show that multiple sites on Clec9A can be successfully targeted, but that strong in vivo binding and provision of suitable helper T cell determinants was essential for efficacy. Second, we show that induction of humoral immunity to CLEC9A-targeted antigens is extremely effective in nonhuman primates, in an adjuvant-free setting. Our findings support extending this vaccination approach to humans and offer important insights into targeting design.


Asunto(s)
Anticuerpos/farmacología , Células Dendríticas/inmunología , Inmunidad Humoral/efectos de los fármacos , Lectinas Tipo C/inmunología , Adyuvantes Inmunológicos , Animales , Sitios de Unión de Anticuerpos , Antígenos CD8/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/farmacología , Células Dendríticas/patología , Humanos , Macaca nemestrina , Ratones , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
5.
J Immunol ; 190(4): 1837-48, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23319732

RESUMEN

A better understanding of immunity to influenza virus is needed to generate cross-protective vaccines. Engagement of Ab-dependent cellular cytotoxicity (ADCC) Abs by NK cells leads to killing of virus-infected cells and secretion of antiviral cytokines and chemokines. ADCC Abs may target more conserved influenza virus Ags compared with neutralizing Abs. There has been minimal interest in influenza-specific ADCC in recent decades. In this study, we developed novel assays to assess the specificity and function of influenza-specific ADCC Abs. We found that healthy influenza-seropositive young adults without detectable neutralizing Abs to the hemagglutinin of the 1968 H3N2 influenza strain (A/Aichi/2/1968) almost always had ADCC Abs that triggered NK cell activation and in vitro elimination of influenza-infected human blood and respiratory epithelial cells. Furthermore, we detected ADCC in the absence of neutralization to both the recent H1N1 pandemic strain (A/California/04/2009) as well as the avian H5N1 influenza hemagglutinin (A/Anhui/01/2005). We conclude that there is a remarkable degree of cross-reactivity of influenza-specific ADCC Abs in seropositive humans. Targeting cross-reactive influenza-specific ADCC epitopes by vaccination could lead to improved influenza vaccines.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Especificidad de Anticuerpos/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Pruebas de Neutralización/métodos , Adulto , Animales , Preescolar , Reacciones Cruzadas/inmunología , Pruebas de Inhibición de Hemaglutinación/métodos , Hemaglutininas Virales/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/metabolismo , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Macaca nemestrina , Persona de Mediana Edad , Unión Proteica/inmunología , Adulto Joven
6.
J Virol ; 87(7): 3760-73, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23325697

RESUMEN

T follicular helper (Tfh) cells are a specialized subset of memory CD4(+) T cells that are found exclusively within the germinal centers of secondary lymphoid tissues and are important for adaptive antibody responses and B cell memory. Tfh cells do not express CCR5, the primary entry coreceptor for both human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV), and therefore, we hypothesized that these cells would avoid infection. We studied lymph nodes and spleens from pigtail macaques infected with pathogenic strain SIVmac239 or SIVmac251, to investigate the susceptibility of Tfh cells to SIV infection. Pigtail macaque PD-1(high) CD127(low) memory CD4(+) T cells have a phenotype comparable to that of human Tfh cells, expressing high levels of CXCR5, interleukin-21 (IL-21), Bcl-6, and inducible T cell costimulator (ICOS). As judged by either proviral DNA or cell-associated viral RNA measurements, macaque Tfh cells were infected with SIV at levels comparable to those in other CD4(+) memory T cells. Infection of macaque Tfh cells was evident within weeks of inoculation, yet we confirmed that Tfh cells do not express CCR5 or either of the well-known alternative SIV coreceptors, CXCR6 and GPR15. Mutations in the SIV envelope gp120 region occurred in chronically infected macaques but were uniform across each T cell subset investigated, indicating that the viruses used the same coreceptors to enter different cell subsets. Early infection of Tfh cells represents an unexpected focus of viral infection. Infection of Tfh cells does not interrupt antibody production but may be a factor that limits the quality of antibody responses and has implications for assessing the size of the viral reservoir.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T Colaboradores-Inductores/virología , Animales , Secuencia de Bases , Citocinas/inmunología , Cartilla de ADN/genética , Citometría de Flujo , Tejido Linfoide/citología , Tejido Linfoide/virología , Macaca nemestrina , Glicoproteínas de Membrana/genética , Datos de Secuencia Molecular , Mutación/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Estadísticas no Paramétricas , Proteínas del Envoltorio Viral/genética
7.
J Virol ; 87(8): 4146-60, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23345519

RESUMEN

There is an urgent need for a human immunodeficiency virus (HIV) vaccine that induces robust mucosal immunity. CD8(+) cytotoxic T lymphocytes (CTLs) apply substantial antiviral pressure, but CTLs to individual epitopes select for immune escape variants in both HIV in humans and SIV in macaques. Inducing multiple simian immunodeficiency virus (SIV)-specific CTLs may assist in controlling viremia. We vaccinated 10 Mane-A1*08401(+) female pigtail macaques with recombinant influenza viruses expressing three Mane-A1*08401-restricted SIV-specific CTL epitopes and subsequently challenged the animals, along with five controls, intravaginally with SIV(mac251). Seroconversion to the influenza virus vector resulted and small, but detectable, SIV-specific CTL responses were induced. There was a boost in CTL responses after challenge but no protection from high-level viremia or CD4 depletion was observed. All three CTL epitopes underwent a coordinated pattern of immune escape during early SIV infection. CTL escape was more rapid in the vaccinees than in the controls at the more dominant CTL epitopes. Although CTL escape can incur a "fitness" cost to the virus, a putative compensatory mutation 20 amino acids upstream from an immunodominant Gag CTL epitope also evolved soon after the primary CTL escape mutation. We conclude that vaccines based only on CTL epitopes will likely be undermined by rapid evolution of both CTL escape and compensatory mutations. More potent and possibly broader immune responses may be required to protect pigtail macaques from SIV.


Asunto(s)
Evasión Inmune , Vacunas contra el SIDAS/administración & dosificación , Vacunas contra el SIDAS/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Epítopos/genética , Epítopos/inmunología , Femenino , Productos del Gen gag/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Macaca nemestrina , Masculino , Mutación Missense , Orthomyxoviridae/genética , Orthomyxoviridae/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
8.
J Infect Dis ; 208(7): 1051-61, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23812238

RESUMEN

BACKGROUND: During the 2009 pandemic of influenza A virus subtype H1N1 (A[H1N1]pdm09) infection, older individuals were partially protected from severe disease. It is not known whether preexisting antibodies with effector functions such as antibody-dependent cellular cytotoxicity (ADCC) contributed to the immunity observed. METHODS: We tested serum specimens obtained from 182 individuals aged 1-72 years that were collected either immediately before or after the A(H1N1)pdm09 pandemic for ADCC antibodies to the A(H1N1)pdm09 hemagglutinin (HA) protein. RESULTS: A(H1N1)pdm09 HA-specific ADCC antibodies were detected in almost all individuals aged >45 years (28/31 subjects) before the 2009 A(H1N1) pandemic. Conversely, only approximately half of the individuals aged 1-14 years (11/31) and 15-45 years (17/31) had cross-reactive ADCC antibodies before the 2009 A(H1N1) pandemic. The A(H1N1)pdm09-specific ADCC antibodies were able to efficiently mediate the killing of influenza virus-infected respiratory epithelial cells. Further, subjects >45 years of age had higher ADCC titers to a range of seasonal H1N1 HA proteins, including from the 1918 virus, compared with younger individuals. CONCLUSIONS: ADCC antibodies may have contributed to the protection exhibited in older individuals during the 2009 A(H1N1) pandemic. This work has significant implications for improved vaccination strategies for future influenza pandemics.


Asunto(s)
Anticuerpos Antivirales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Factores de Edad , Niño , Preescolar , Femenino , Humanos , Lactante , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Nanoscale ; 14(9): 3452-3466, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35179174

RESUMEN

Engineered nanoparticles for the encapsulation of bioactive agents hold promise to improve disease diagnosis, prevention and therapy. To advance this field and enable clinical translation, the rational design of nanoparticles with controlled functionalities and a robust understanding of nanoparticle-cell interactions in the complex biological milieu are of paramount importance. Herein, a simple platform obtained through the nanocomplexation of glycogen nanoparticles and albumin is introduced for the delivery of chemotherapeutics in complex multicellular 2D and 3D systems. We found that the dendrimer-like structure of aminated glycogen nanoparticles is key to controlling the multivalent coordination and phase separation of albumin molecules to form stable glycogen-albumin nanocomplexes. The pH-responsive glycogen scaffold conferred the nanocomplexes the ability to undergo partial endosomal escape in tumour, stromal and immune cells while albumin enabled nanocomplexes to cross endothelial cells and carry therapeutic agents. Limited interactions of nanocomplexes with T cells, B cells and natural killer cells derived from human blood were observed. The nanocomplexes can accommodate chemotherapeutic drugs and release them in multicellular 2D and 3D constructs. The drugs loaded on the nanocomplexes retained their cytotoxic activity, which is comparable with the activity of the free drugs. Cancer cells were found to be more sensitive to the drugs in the presence of stromal and immune cells. Penetration and cytotoxicity of the drug-loaded nanocomplexes in tumour mimicking tissues were validated using a 3D multicellular-collagen construct in a perfusion bioreactor. The results highlight a simple and potentially scalable strategy for engineering nanocomplexes made entirely of biological macromolecules with potential use for drug delivery.


Asunto(s)
Albúminas , Antineoplásicos , Glucógeno , Nanopartículas , Albúminas/química , Antineoplásicos/administración & dosificación , Células Endoteliales , Glucógeno/química , Humanos , Nanopartículas/química
10.
J Control Release ; 348: 420-430, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35636618

RESUMEN

As a malignant tumour of lymphatic origin, B-cell lymphoma represents a significant challenge for drug delivery, where effective therapies must access malignant cells in the blood, organs and lymphatics while avoiding off-target toxicity. Subcutaneous (SC) administration of nanomedicines allows preferential access to both the lymphatic and blood systems and may therefore provide a route to enhanced drug exposure to lymphomas. Here we examine the impact of SC dosing on lymphatic exposure, pharmacokinetics (PK), and efficacy of AZD0466, a small molecule dual Bcl-2/Bcl-xL inhibitor conjugated to a 'DEP®' G5 poly-l-lysine dendrimer. PK studies reveal that the plasma half-life of the dendrimer-drug conjugate is 8-times longer than that of drug alone, providing evidence of slow release from the circulating dendrimer nanocarrier. The SC dosed construct also shows preferential lymphatic transport, with over 50% of the bioavailable dose recovered in thoracic lymph. Increases in dose (up to 400 mg/kg) are well tolerated after SC administration and studies in a model of disseminated lymphoma in mice show that high dose SC treatment outperforms IV administration using doses that lead to similar total plasma exposure (lower peak concentrations but extended exposure after SC). These data show that the DEP® dendrimer can act as a circulating drug depot accessing both the lymphatic and blood circulatory systems. SC administration improves lymphatic exposure and facilitates higher dose administration due to improved tolerability. Higher dose SC administration also results in improved efficacy, suggesting that drug delivery systems that access both plasma and lymph hold significant potential for the treatment of haematological cancers where lymphatic and extranodal dissemination are poor prognostic factors.


Asunto(s)
Antineoplásicos , Dendrímeros , Linfoma , Animales , Dendrímeros/química , Inyecciones Subcutáneas , Linfa , Sistema Linfático , Linfoma/tratamiento farmacológico , Ratones
11.
Immunogenetics ; 63(8): 511-21, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21556859

RESUMEN

Pig-tailed macaques (Macaca nemestrina) are a commonly studied primate model of human AIDS. The Mane-A1*084:01 MHC class I allele (previously named Mane-A*10) is important for the control of SIV infection by CD8+ T cells in this model. Validated methods to detect this allele in large numbers of macaques are lacking. We studied this MHC allele using sequence-specific PCRs in 217 pig-tailed macaques and identified 75 (35%) positive animals. We then performed massively parallel pyrosequencing with a universal 568-bp MHC class I cDNA-PCR amplicon for 50 of these 75 macaques. All 50 animals expressed Mane-A1*084:01 or closely related variants of the Mane-A1*084 lineage. Mane-A1*084 transcripts accounted for an average of 20.9% of all class I sequences identified per animal. SIV infection of a subset of these macaques resulted in the induction of SIV-specific CD8+ T cell responses detected by Mane-A1*084:01 tetramers. An average of 19 distinct class I transcripts were identified per animal by pyrosequencing. This analysis revealed 89 new Mane class I sequences as well as 32 previously described sequences that were extended with the longer amplicons employed in the current study. In addition, multiple Mane class I haplotypes that had been inferred previously based on shared transcript profiles between unrelated animals were confirmed for a subset of animals where pedigree information was available. We conclude that sequence-specific PCR is useful to screen pig-tailed macaques for Mane-A1*084:01, although pyrosequencing permits a much broader identification of the repertoire of MHC class I sequences and haplotypes expressed by individual animals.


Asunto(s)
Genes MHC Clase I , Macaca nemestrina/genética , Alelos , Animales , Linfocitos T CD8-positivos/inmunología , Genotipo , Macaca nemestrina/inmunología
12.
J Immunol ; 183(4): 2827-36, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19635903

RESUMEN

Ag-specific human CD4(+) memory T lymphocytes have mostly been studied using assays of proliferation in vitro. Intracellular cytokine and ELISPOT assays quantify effector cell populations but barely detect responses to certain recall Ags that elicit strong proliferative responses, e.g., tetanus toxoid, that comprise non-Th1 CD4(+) cells. We have found that culturing whole blood with Ag for 40-48 h induces specific CD4(+) T cells to simultaneously express CD25 and CD134. This new technique readily detects responses to well-described CD4(+) T cell recall Ags, including preparations of mycobacteria, CMV, HSV-1, influenza, tetanus toxoid, Candida albicans, and streptokinase, as well as HIV-1 peptides, with high specificity. The assay detects much higher levels of Ag-specific cells than intracellular cytokine assays, plus the cells retain viability and can be sorted for in vitro expansion. Furthermore, current in vitro assays for human CD4(+) memory T lymphocytes are too labor-intensive and difficult to standardize for routine diagnostic laboratories, whereas the whole-blood CD25(+)CD134(+) assay combines simplicity of setup with a straightforward cell surface flow cytometry readout. In addition to revealing the true extent of Ag-specific human CD4(+) memory T lymphocytes, its greatest use will be as a simple in vitro monitor of CD4(+) T cell responses to Ags such as tuberculosis infection or vaccines.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Subunidad alfa del Receptor de Interleucina-2/sangre , Activación de Linfocitos/inmunología , Receptores OX40/sangre , Adulto , Secuencia de Aminoácidos , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Enfermedad Crónica , Epítopos de Linfocito T/sangre , Fluoresceínas , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Humanos , Subunidad alfa del Receptor de Interleucina-2/biosíntesis , Estudios Longitudinales , Macaca nemestrina , Datos de Secuencia Molecular , Receptores OX40/biosíntesis , Succinimidas , Timidina , Tritio
14.
Adv Healthc Mater ; 10(9): e2002160, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33644997

RESUMEN

Nanoparticles offer great promise for more effective drug delivery. However, their particulate nature typically results in rapid systemic clearance by immune cells in blood. Currently, to understand these interactions, nanoparticle association is probed ex vivo with whole blood. While ex vivo assays give important information about the relative cell association, they do not consider changes in immune cell homeostasis or the complex mixing behavior that occurs in vivo. To address this, a nanoparticle in vivo immune-cell association assay is developed to study the in vivo association of unmodified and poly(ethylene glycol) modified liposomes with immune cells, and compared this to the ex vivo association in static whole blood. In vivo, it is observed that neutrophils play a significantly greater role in nanoparticle binding than suggested by ex vivo assays. The increased influence of neutrophils in vivo is largely due to a significant increase in number of circulating neutrophils after intravenous injection. Conversely, the number of circulating monocytes significantly decreased after intravenous injection, leading to significantly less total association of liposomes to monocytes compared to ex vivo. This novel in vivo immune cell binding assay sheds new light on the fate of nanoparticles following intravenous delivery.


Asunto(s)
Nanopartículas , Sistemas de Liberación de Medicamentos , Liposomas , Monocitos , Polietilenglicoles
15.
Sci Immunol ; 6(60)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172588

RESUMEN

CD1c presents lipid-based antigens to CD1c-restricted T cells, which are thought to be a major component of the human T cell pool. However, the study of CD1c-restricted T cells is hampered by the presence of an abundantly expressed, non-T cell receptor (TCR) ligand for CD1c on blood cells, confounding analysis of TCR-mediated CD1c tetramer staining. Here, we identified the CD36 family (CD36, SR-B1, and LIMP-2) as ligands for CD1c, CD1b, and CD1d proteins and showed that CD36 is the receptor responsible for non-TCR-mediated CD1c tetramer staining of blood cells. Moreover, CD36 blockade clarified tetramer-based identification of CD1c-restricted T cells and improved identification of CD1b- and CD1d-restricted T cells. We used this technique to characterize CD1c-restricted T cells ex vivo and showed diverse phenotypic features, TCR repertoire, and antigen-specific subsets. Accordingly, this work will enable further studies into the biology of CD1 and human CD1-restricted T cells.


Asunto(s)
Presentación de Antígeno , Antígenos CD1/metabolismo , Antígenos CD36/metabolismo , Glicoproteínas/metabolismo , Subgrupos de Linfocitos T/inmunología , Capa Leucocitaria de la Sangre , Antígenos CD36/antagonistas & inhibidores , Voluntarios Sanos , Humanos , Células Jurkat , Ligandos , Lípidos/inmunología , Cultivo Primario de Células , Multimerización de Proteína , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/metabolismo
16.
J Virol ; 83(3): 1501-10, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19019966

RESUMEN

Practical immunotherapies for human immunodeficiency virus infection are needed. We evaluated inactivated simian immunodeficiency virus (SIV) pulsed onto fresh peripheral blood mononuclear cells in 12 pigtail macaques with chronic SIV(mac251) infection for T-cell immunogenicity in a randomized cross-over design study. The immunotherapy was safe and convincingly induced high levels of SIV-specific CD4(+) T-cell responses (mean, 5.9% +/- 1.3% of all CD4(+) T cells) and to a lesser extent SIV-specific CD8(+) T-cell responses (mean, 0.7% +/- 0.4%). Responses were primarily directed toward Gag and less frequently toward Env but not Pol or regulatory/accessory SIV proteins. T-cell responses against Gag were generally broad and polyfunctional, with a mean of 2.7 CD4(+) T-cell epitopes mapped per animal and more than half of the SIV Gag-specific CD4(+) T cells expressing three or more effector molecules. The immunogenicity was comparable to that found in previous studies of peptide-pulsed blood cells. Despite the high-level immunogenicity, no reduction in viral load was observed in the chronically viremic macaques. This contrasts with our studies of immunization with peptide-pulsed blood cells during early SIV infection in macaques. Future studies of inactivated virus-pulsed blood cell immunotherapy during early infection of patients receiving antiretroviral therapy are warranted.


Asunto(s)
Inmunoterapia , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Virus de la Inmunodeficiencia de los Simios/inmunología , Secuencia de Aminoácidos , Animales , Estudios Cruzados , Macaca nemestrina , Datos de Secuencia Molecular , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/aislamiento & purificación , Linfocitos T/inmunología , Carga Viral , Vacunas Virales/administración & dosificación
17.
J Virol ; 83(4): 1617-24, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19052081

RESUMEN

NKT cells are a specialized population of T lymphocytes that have an increasingly recognized role in immunoregulation, including controlling the response to viral infections. The characteristics of NKT cells in the peripheral blood of macaques during simian immunodeficiency virus (SIV) or chimeric simian/human immunodeficiency virus (HIV) (SHIV) infection were assessed. NKT cells comprised a mean of 0.19% of peripheral blood lymphocytes across the 64 uninfected macaques studied. Although the range in the percentages of NKT cells was large (0 to 2.2%), levels were stable over time within individual macaques without SIV/SHIV infection. The majority of NKT cells in macaques were CD4(+) (on average 67%) with smaller populations being CD8(+) (21%) and CD4/CD8 double positive (13%). A precipitous decline in CD4(+) NKT cells occurred in all six macaques infected with CXCR4-tropic SHIV(mn229) early after infection, with a concomitant rise in CD8(+) NKT cells in some animals. The depletion of CD4(+) NKT cells was tightly correlated with the depletion of total CD4(+) T cells. R5-tropic SIV(mac251) infection of macaques resulted in a slower and more variable decline in CD4(+) NKT cells, with animals that were able to control SIV virus levels maintaining higher levels of CD4(+) NKT cells. An inverse correlation between the depletion of total and CD4(+) NKT cells and SIV viral load during chronic infection was observed. Our results demonstrate the infection-driven depletion of peripheral CD4(+) NKT cells during both SHIV and SIV infection of macaques. Further studies of the implications of the loss of NKT cell subsets in the pathogenesis of HIV disease are needed.


Asunto(s)
Células T Asesinas Naturales/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Antígenos CD4/análisis , Recuento de Linfocito CD4 , Antígenos CD8/análisis , Macaca nemestrina , Células T Asesinas Naturales/química , Subgrupos de Linfocitos T/inmunología , Carga Viral
18.
J Virol ; 83(15): 7619-28, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19439474

RESUMEN

There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.


Asunto(s)
Ingeniería Genética , Infecciones por VIH/prevención & control , Virus de la Influenza A/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular , VIH/genética , VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza A/genética , Macaca nemestrina , Modelos Animales , Vacunas contra el SIDAS/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Vacunación
19.
PLoS Pathog ; 4(5): e1000055, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18451982

RESUMEN

Effective immunotherapies for HIV are needed. Drug therapies are life-long with significant toxicities. Dendritic-cell based immunotherapy approaches are promising but impractical for widespread use. A simple immunotherapy, reinfusing fresh autologous blood cells exposed to overlapping SIV peptides for 1 hour ex vivo, was assessed for the control of SIV(mac251) replication in 36 pigtail macaques. An initial set of four immunizations was administered under antiretroviral cover and a booster set of three immunizations administered 6 months later. Vaccinated animals were randomized to receive Gag peptides alone or peptides spanning all nine SIV proteins. High-level, SIV-specific CD4 and CD8 T-cell immunity was induced following immunization, both during antiretroviral cover and without. Virus levels were durably approximately 10-fold lower for 1 year in immunized animals compared to controls, and a significant delay in AIDS-related mortality resulted. Broader immunity resulted following immunizations with peptides spanning all nine SIV proteins, but the responses to Gag were weaker in comparison to animals only immunized with Gag. No difference in viral outcome occurred in animals immunized with all SIV proteins compared to animals immunized against Gag alone. Peptide-pulsed blood cells are an immunogenic and effective immunotherapy in SIV-infected macaques. Our results suggest Gag alone is an effective antigen for T-cell immunotherapy. Fresh blood cells pulsed with overlapping Gag peptides is proceeding into trials in HIV-infected humans.


Asunto(s)
Productos del Gen gag/administración & dosificación , Inmunoterapia/métodos , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Viremia/terapia , Animales , Transfusión de Componentes Sanguíneos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Productos del Gen gag/inmunología , Longevidad , Macaca nemestrina , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología
20.
Front Immunol ; 10: 431, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024518

RESUMEN

Background: Current immune-based TB tests, including the tuberculin skin test (TST) and interferon-gamma release assays (IGRA), have significant limitations, including the inability to distinguish between latent TB infection (LTBI) and active TB. Few biomarkers with the potential to discriminate between these two infection states have been identified. Objective: To determine whether functional profiling of mycobacteria-specific T cells can distinguish between TB-infected and -uninfected children, and simultaneously discriminate between LTBI and active TB. Methods: One hundred and forty-nine children with suspected active TB or risk factors for LTBI were recruited at the Royal Children's Hospital Melbourne. Whole-blood stimulation assays, using ESAT-6, CFP-10, PPD, and heat-killed M. tuberculosis as stimulants, were done, followed by intracellular cytokine staining and flow cytometric analysis. Results: Eighty-two participants in the well-defined diagnostic categories 'uninfected individuals' (asymptomatic, TST 0 mm / IGRA-; n = 61), LTBI (asymptomatic, TST ≥10 mm / IGRA+, normal chest radiograph; n = 15), or active TB [microbiologically-confirmed (n = 3) or fulfilling stringent criteria (n = 3)] were included in the final analysis. The proportions of mycobacteria-specific single-positive TNF-α+ and double-positive IFN-γ+/TNF-α+ CD4+ T cells were significantly higher in participants with active TB than in those with LTBI and uninfected individuals. Additionally, the frequency of IL-17-expressing CD4+ T cells, predominately with single-positive IL-17+ and double-positive IL-2+/IL-17+ phenotypes, was higher in participants with active TB than in the other two groups. Conclusions: The frequencies and functional profiles of mycobacteria-specific CD4+ T cells differ significantly both between TB-infected and TB-uninfected children, and between LTBI and active TB. Although confirmation in further studies will be required, these findings indicate that functional profiling of mycobacteria-specific CD4+ T cells could potentially be exploited for novel immune-based TB assays that enable the distinction between infection states based on a blood sample alone.


Asunto(s)
Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Tuberculosis Latente/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Células Cultivadas , Niño , Diagnóstico Diferencial , Progresión de la Enfermedad , Citometría de Flujo , Humanos , Inmunofenotipificación , Tuberculosis Latente/diagnóstico , Activación de Linfocitos , Prueba de Estudio Conceptual , Estudios Prospectivos , Especificidad del Receptor de Antígeno de Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA