Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018546

RESUMEN

Immune responses to human cytomegalovirus (CMV) can be used to assess immune fitness in an individual. Further to its clinical significance in posttransplantation settings, emerging clinical and translational studies provide examples of immune correlates of protection pertaining to anti-CMV immune responses in the context of cancer or infectious diseases, e.g., tuberculosis. In this viewpoint, we provide a brief overview about CMV-directed immune reactivity and immune fitness in a clinical context and incorporate some of our own findings obtained from peripheral blood or tumour-infiltrating lymphocytes (TIL) from patients with advanced cancer. Observations in patients with solid cancers whose lesions contain both CMV and tumour antigen-specific T-cell subsets are highlighted, due to a possible CMV-associated "bystander" effect in amplifying local inflammation and subsequent tumour rejection. The role of tumour-associated antibodies recognising diverse CMV-derived epitopes is also discussed in light of anti-cancer immune responses. We discuss here the use of anti-CMV immune responses as a theranostic tool-combining immunodiagnostics with a personalised therapeutic potential-to improve treatment outcomes in oncological indications.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Neoplasias/virología , Animales , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/terapia , Humanos , Inmunidad , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Medicina de Precisión/métodos
2.
Oncoimmunology ; 12(1): 2163785, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632566

RESUMEN

The SARS-CoV-2 pandemic still represents a threat for immunosuppressed and hematological malignancy (HM) bearing patients, causing increased morbidity and mortality. Given the low anti-SARSCoV-2 IgG titers post-vaccination, the COVID-19 threat prompted the prophylactic use of engineered anti-SARS-CoV-2 monoclonal antibodies. In addition, potential clinical significance of T cell responses has been overlooked during the first waves of the pandemic, calling for additional in-depth studies. We reported that the polarity and the repertoire of T cell immune responses govern the susceptibility to SARS-CoV-2 infection in health care workers and solid cancer patients. Here, we longitudinally analyzed humoral and cellular immune responses at each BNT162b2 mRNA vaccine injection in 47 HM patients under therapy. Only one-third of HM, mostly multiple myeloma (MM) bearing patients, could mount S1-RBD-specific IgG responses following BNT162b2 mRNA vaccines. This vaccine elicited a S1-RBD-specific Th1 immune response in about 20% patients, mostly in MM and Hodgkin lymphoma, while exacerbating Th2 responses in the 10% cases that presented this recognition pattern at baseline (mostly rituximab-treated patients). Performing a third booster barely improved the percentage of patients developing an S1-RBD-specific Th1 immunity and failed to seroconvert additional HM patients. Finally, 16 patients were infected with SARS-CoV-2, of whom 6 developed a severe infection. Only S1-RBD-specific Th1 responses were associated with protection against SARS-CoV2 infection, while Th2 responses or anti-S1-RBD IgG titers failed to correlate with protection. These findings herald the paramount relevance of vaccine-induced Th1 immune responses in hematological malignancies.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Mieloma Múltiple , Vacunas , Humanos , COVID-19/prevención & control , Vacuna BNT162 , SARS-CoV-2 , ARN Viral , Neoplasias Hematológicas/complicaciones , Anticuerpos Antivirales , Inmunoglobulina G
3.
Cancer Discov ; 12(4): 958-983, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35179201

RESUMEN

Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants. SIGNIFICANCE: This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 873.


Asunto(s)
Factores de Restricción Antivirales , COVID-19 , Neoplasias , Linfocitos T , Anticuerpos Neutralizantes , Factores de Restricción Antivirales/inmunología , COVID-19/inmunología , Humanos , Neoplasias/complicaciones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T/inmunología
4.
Front Immunol ; 12: 592031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335558

RESUMEN

Successful outcome of immune checkpoint blockade in patients with solid cancers is in part associated with a high tumor mutational burden (TMB) and the recognition of private neoantigens by T-cells. The quality and quantity of target recognition is determined by the repertoire of 'neoepitope'-specific T-cell receptors (TCRs) in tumor-infiltrating lymphocytes (TIL), or peripheral T-cells. Interferon gamma (IFN-γ), produced by T-cells and other immune cells, is essential for controlling proliferation of transformed cells, induction of apoptosis and enhancing human leukocyte antigen (HLA) expression, thereby increasing immunogenicity of cancer cells. TCR αß-dependent therapies should account for tumor heterogeneity and availability of the TCR repertoire capable of reacting to neoepitopes and functional HLA pathways. Immunogenic epitopes in the tumor-stroma may also be targeted to achieve tumor-containment by changing the immune-contexture in the tumor microenvironment (TME). Non protein-coding regions of the tumor-cell genome may also contain many aberrantly expressed, non-mutated tumor-associated antigens (TAAs) capable of eliciting productive anti-tumor immune responses. Whole-exome sequencing (WES) and/or RNA sequencing (RNA-Seq) of cancer tissue, combined with several layers of bioinformatic analysis is commonly used to predict possible neoepitopes present in clinical samples. At the ImmunoSurgery Unit of the Champalimaud Centre for the Unknown (CCU), a pipeline combining several tools is used for predicting private mutations from WES and RNA-Seq data followed by the construction of synthetic peptides tailored for immunological response assessment reflecting the patient's tumor mutations, guided by MHC typing. Subsequent immunoassays allow the detection of differential IFN-γ production patterns associated with (intra-tumoral) spatiotemporal differences in TIL or peripheral T-cells versus TIL. These bioinformatics tools, in addition to histopathological assessment, immunological readouts from functional bioassays and deep T-cell 'adaptome' analyses, are expected to advance discovery and development of next-generation personalized precision medicine strategies to improve clinical outcomes in cancer in the context of i) anti-tumor vaccination strategies, ii) gauging mutation-reactive T-cell responses in biological therapies and iii) expansion of tumor-reactive T-cells for the cellular treatment of patients with cancer.


Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Epítopos de Linfocito T/inmunología , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Animales , Biología Computacional , Humanos , Neoplasias/terapia , Medicina de Precisión , Linfocitos T/trasplante , Secuenciación Completa del Genoma
5.
Int J Infect Dis ; 98: 454-459, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32693089

RESUMEN

Genetic factors such as the HLA type of patients may play a role in regard to disease severity and clinical outcome of patients with COVID-19. Taking the data deposited in the GISAID database, we made predictions using the IEDB analysis resource (TepiTool) to gauge how variants in the SARS-CoV-2 genome may change peptide binding to the most frequent MHC-class I and -II alleles in Africa, Asia and Europe. We caracterized how a single mutation in the wildtype sequence of of SARS-CoV-2 could influence the peptide binding of SARS-CoV-2 variants to MHC class II, but not to MHC class I alleles. Assuming the ORF8 (L84S) mutation is biologically significant, selective pressure from MHC class II alleles may select for viral varients and subsequently shape the quality and quantity of cellular immune responses aginast SARS-CoV-2. MHC 4-digit typing along with viral sequence analysis should be considered in studies examining clinical outcomes in patients with COVID-19.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/mortalidad , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Neumonía Viral/genética , Neumonía Viral/mortalidad , África , Alelos , Asia , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Europa (Continente) , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2
6.
Front Cell Dev Biol ; 7: 362, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32039196

RESUMEN

The intricate interplay between the immune system and microbes is an essential part of the physiological homeostasis in health and disease. Immunological recognition of commensal microbes, such as bacterial species resident in the gut or lung as well as dormant viral species, i.e., cytomegalovirus (CMV) or Epstein-Barr virus (EBV), in combination with a balanced immune regulation, is central to achieve immune-protection. Emerging evidence suggests that immune responses primed to guard against commensal microbes may cause unexpected pathological outcomes, e.g., chronic inflammation and/or malignant transformation. Furthermore, translocation of immune cells from one anatomical compartment to another, i.e., the gut-lung axis via the lymphatics or blood has been identified as an important factor in perpetrating systemic inflammation, tissue destruction, as well as modulating host-protective immune responses. We present in this review immune response patterns to pathogenic as well as non-pathogenic microbes and how these immune-recognition profiles affect local immune responses or malignant transformation. We discuss personalized immunological therapies which, directly or indirectly, target host biological pathways modulated by antimicrobial immune responses.

7.
Front Microbiol ; 10: 2924, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998254

RESUMEN

Memory formation, guided by microbial ligands, has been reported for innate immune cells. Epigenetic imprinting plays an important role herein, involving histone modification after pathogen-/danger-associated molecular patterns (PAMPs/DAMPs) recognition by pattern recognition receptors (PRRs). Such "trained immunity" affects not only the nominal target pathogen, yet also non-related targets that may be encountered later in life. The concept of trained innate immunity warrants further exploration in cancer and how these insights can be implemented in immunotherapeutic approaches. In this review, we discuss our current understanding of innate immune memory and we reference new findings in this field, highlighting the observations of trained immunity in monocytic and natural killer cells. We also provide a brief overview of trained immunity in non-immune cells, such as stromal cells and fibroblasts. Finally, we present possible strategies based on trained innate immunity that may help to devise host-directed immunotherapies focusing on cancer, with possible extension to infectious diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA