RESUMEN
The aim of the present study was to investigate the effects of a strategy for extending pro-oestrus (the interval between luteolysis and ovulation) in an oestrus synchronisation protocol (named J-Synch) in beef heifers on follicular growth, sexual steroid concentrations, the oestrogen receptor ERα and progesterone receptors (PR) in the uterus, insulin-like growth factor (IGF) 1 and pregnancy rates. In Experiment 1, heifers treated with the new J-Synch protocol had a longer pro-oestrus period than those treated with the conventional protocol (mean (±s.e.m.) 93.7±12.9 vs 65.0±13.7h respectively; P<0.05). The rate of dominant follicle growth from the time of progesterone device removal to ovulation was greater in heifers in the J-Synch than conventional group (P<0.05). Luteal area and serum progesterone concentrations were greater in the J-Synch Group (P<0.05) for the 12 days after ovulation. Progesterone receptor (PGR) staining on Day 6 after ovulation in the uterine stroma was lower in the J-Synch than conventional group (P<0.05), and the expression of PR gene (PGR) and IGF1 gene tended to be lower in J-Synch-treated heifers (P<0.1). In Experiment 2 (n=2349), the pregnancy rate 30-35 days after fixed-time AI (FTAI) was greater for heifers in the J-Synch than conventional group (56.1% vs 50.7% respectively). In conclusion, our strategy for extending pro-oestrus (i.e. the J-Synch protocol) significantly improves pregnancy establishment in beef heifers. This improvement was related to an increased rate of growth of the dominant ovulatory follicle, greater progesterone concentrations during the ensuing luteal phase and different uterine patterns of PGR and IGF1, which may have favoured embryo development and pregnancy establishment.