Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 106(3): 782-796, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29067777

RESUMEN

Micro-to-nanoscale surface topographies of orthopaedic and dental implants can affect fluid wetting and biological response. Nanoscale features can be superimposed on microscale roughness of titanium (Ti) surfaces at high temperatures, resulting in increased osteoblast differentiation. However, high temperatures can compromise mechanical properties of the bulk material. Here, we have developed a novel low-temperature microwave hydrothermal (MWHT) oxidation process for nanomodification of microrough (SLA) Ti surfaces. Nanoscale protuberances (20 -100 nm average diameter) were generated on SLA surfaces via MWHT treatment at 200°C in H2 O, or in aqueous solutions of H2 O2 or NH4 OH, for times ranging from 1 to 40 h. The size, shape, and crystalline content of the nanoprotuberances varied with the solution used and treatment time. The hydrophilicity of all MWHT-modified surfaces was dramatically enhanced. MG63 and normal human osteoblasts (NHOsts) were cultured on MWHT-treated SLA surfaces. While most responses to MWHT-modified surfaces were comparable to those seen on SLA controls, the MWHT-generated nanotopography reduced osteocalcin production by NHOst cells, suggesting that specific nanotopographic characteristics differentially mediate osteoblast phenotypic expression. MWHT processing provides a scalable, low-temperature route for tailoring nanoscale topographies on microroughened titanium implant surfaces with significantly enhanced wetting by water, without degrading the microscale surface structure of such implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 782-796, 2018.


Asunto(s)
Tecnología Biomédica/métodos , Frío , Microondas , Titanio/química , Agua/química , Línea Celular Tumoral , Humanos , Osteoblastos/citología , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Humectabilidad , Difracción de Rayos X
2.
J Mater Chem B ; 3(26): 5232-5240, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32262598

RESUMEN

Cellular metabolic pathways are paradigms for the rapid and waste-free conversion of molecules into useful products through multiple enzyme-catalyzed steps (cascade reactions). Attempts to establish efficient cascade reactions for technological applications have focused on mimicking nature's high degree of organization by controlling the positioning of enzymes through immobilization in tailor-made compartments. The present work utilized peptide-mediated layer-by-layer mineralization as a facile and generic method for the compartmentalisation of multi-enzyme systems in nanoscale silica layers. It is demonstrated that, in a multilayer system, the overall rate of the reaction cascade was primarily affected by the placement of the enzyme catalyzing the first step, with the placement of the enzyme possessing the lowest catalytic efficiency also being an important factor. As the rate-limiting enzymes were positioned closer to the external silica surface, the overall rate of cascade reactions increased. Furthermore, distributing the enzymes into different adjacent silica compartments yielded higher overall cascade reaction rates compared to placement of the enzymes into the same silica layer. The synthetic methods and kinetic analyses presented here provide guidance for improving the performance of immobilized multi-enzyme systems for a wide range of technological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA