Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(8): 828-837, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988089

RESUMEN

Memory T cells are critical for the immune response to recurring infections. Their instantaneous reactivity to pathogens is empowered by the persistent expression of cytokine-encoding mRNAs. How the translation of proteins from pre-formed cytokine-encoding mRNAs is prevented in the absence of infection has remained unclear. Here we found that protein production in memory T cells was blocked via a 3' untranslated region (3' UTR)-mediated process. Germline deletion of AU-rich elements (AREs) in the Ifng-3' UTR led to chronic cytokine production in memory T cells. This aberrant protein production did not result from increased expression and/or half-life of the mRNA. Instead, AREs blocked the recruitment of cytokine-encoding mRNA to ribosomes; this block depended on the ARE-binding protein ZFP36L2. Thus, AREs mediate repression of translation in mouse and human memory T cells by preventing undesirable protein production from pre-formed cytokine-encoding mRNAs in the absence of infection.


Asunto(s)
Regiones no Traducidas 3'/genética , Elementos Ricos en Adenilato y Uridilato/genética , Interferón gamma/genética , ARN Mensajero/genética , Linfocitos T/inmunología , Animales , Células Cultivadas , Represión Epigenética , Memoria Inmunológica , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Extensión de la Cadena Peptídica de Translación , Ribosomas/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
2.
Eur J Immunol ; 54(5): e2350873, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501878

RESUMEN

Resident memory T (TRM) cells have been recently established as an important subset of memory T cells that provide early and essential protection against reinfection in the absence of circulating memory T cells. Recent findings showing that TRM expand in vivo after repeated antigenic stimulation indicate that these memory T cells are not terminally differentiated. This suggests an opportunity for in vitro TRM expansion to apply in an immunotherapy setting. However, it has also been shown that TRM may not maintain their identity and form circulating memory T cells after in vivo restimulation. Therefore, we set out to determine how TRM respond to antigenic activation in culture. Using Listeria monocytogenes and LCMV infection models, we found that TRM from the intraepithelial compartment of the small intestine expand in vitro after antigenic stimulation and subsequent resting in homeostatic cytokines. A large fraction of the expanded TRM retained their phenotype, including the expression of key TRM markers CD69 and CD103 (ITGAE). The optimal culture of TRM required low O2 pressure to maintain the expression of these and other TRM-associated molecules. Expanded TRM retained their effector capacity to produce cytokines after restimulation, but did not acquire a highly glycolytic profile indicative of effector T cells. The proteomic analysis confirmed TRM profile retention, including expression of TRM-related transcription factors, tissue retention factors, adhesion molecules, and enzymes involved in fatty acid metabolism. Collectively, our data indicate that limiting oxygen conditions supports in vitro expansion of TRM cells that maintain their TRM phenotype, at least in part, suggesting an opportunity for therapeutic strategies that require in vitro expansion of TRM.


Asunto(s)
Memoria Inmunológica , Listeria monocytogenes , Células T de Memoria , Animales , Células T de Memoria/inmunología , Memoria Inmunológica/inmunología , Ratones , Listeria monocytogenes/inmunología , Antígenos CD/metabolismo , Antígenos CD/inmunología , Cadenas alfa de Integrinas/metabolismo , Ratones Endogámicos C57BL , Listeriosis/inmunología , Lectinas Tipo C/metabolismo , Lectinas Tipo C/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Activación de Linfocitos/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Mucosa Intestinal/inmunología , Linfocitos T CD8-positivos/inmunología , Intestino Delgado/inmunología , Células Cultivadas
3.
J Immunol ; 211(3): 377-388, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37341500

RESUMEN

The endothelial lining of blood vessels is covered with a thin polysaccharide coat called the glycocalyx. This layer of polysaccharides contains hyaluronan that forms a protective coat on the endothelial surface. Upon inflammation, leukocytes leave the circulation and enter inflamed tissue by crossing inflamed endothelial cells, mediated by adhesion molecules such as ICAM-1/CD54. To what extent the glycocalyx participates in the regulation of leukocyte transmigration is not clear. During extravasation, leukocyte integrins cluster ICAM-1, resulting in the recruitment of a number of intracellular proteins and subsequent downstream effects in the endothelial cells. For our studies, we used primary human endothelial and immune cells. With an unbiased proteomics approach, we identified the full ICAM-1 adhesome and identified 93 (to our knowledge) new subunits of the ICAM-1 adhesome. Interestingly, we found the glycoprotein CD44 as part of the glycocalyx to be recruited to clustered ICAM-1 specifically. Our data demonstrate that CD44 binds hyaluronan to the endothelial surface, where it locally concentrates and presents chemokines that are essential for leukocytes to cross the endothelial lining. Taken together, we discover a link between ICAM-1 clustering and hyaluronan-mediated chemokine presentation by recruiting hyaluronan to sites of leukocyte adhesion via CD44.


Asunto(s)
Células Endoteliales , Ácido Hialurónico , Humanos , Células Endoteliales/metabolismo , Ácido Hialurónico/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Endotelio/metabolismo , Adhesión Celular/fisiología , Leucocitos/metabolismo , Receptores de Hialuranos/metabolismo
4.
Eur J Immunol ; 53(2): e2249918, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36482267

RESUMEN

Memory CD8+ T cells are indispensable for maintaining long-term immunity against intracellular pathogens and tumors. Despite their presence at oxygen-deprived infected tissue sites or in tumors, the impact of local oxygen pressure on memory CD8+ T cells remains largely unclear. We sought to elucidate how oxygen pressure impacts memory CD8+ T cells arising after infection with Listeria monocytogenes-OVA. Our data revealed that reduced oxygen pressure during in vitro culture switched CD8+ T cell metabolism from oxidative phosphorylation to a glycolytic phenotype. Quantitative proteomic analysis showed that limiting oxygen conditions increased the expression of glucose transporters and components of the glycolytic pathway, while decreasing TCA cycle and mitochondrial respiratory chain proteins. The altered CD8+ T cell metabolism did not affect the expansion potential, but enhanced the granzyme B and IFN-γ production capacity. In vivo, memory CD8+ T cells cultured under low oxygen pressure provided protection against bacterial rechallenge. Taken together, our study indicates that strategies of cellular immune therapy may benefit from reducing oxygen during culture to develop memory CD8+ T cells with superior effector functions.


Asunto(s)
Listeria monocytogenes , Listeriosis , Neoplasias , Animales , Ratones , Linfocitos T CD8-positivos , Proteómica , Neoplasias/patología , Oxígeno/metabolismo , Glucólisis , Memoria Inmunológica , Ratones Endogámicos C57BL
5.
Blood ; 137(19): 2694-2698, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33544829

RESUMEN

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder caused by the development of autoantibodies targeting different domains of ADAMTS13. Profiling studies have shown that residues R568, F592, R660, Y661, and Y665 within exosite-3 of the spacer domain provide an immunodominant region of ADAMTS13 for pathogenic autoantibodies that develop in patients with iTTP. Modification of these 5 core residues with the goal of reducing autoantibody binding revealed a significant tradeoff between autoantibody resistance and proteolytic activity. Here, we employed structural bioinformatics to identify a larger epitope landscape on the ADAMTS13 spacer domain. Models of spacer-antibody complexes predicted that residues R568, L591, F592, K608, M609, R636, L637, R639, R660, Y661, Y665, and L668 contribute to an expanded epitope within the spacer domain. Based on bioinformatics-guided predictions, we designed a panel of N-glycan insertions in this expanded epitope to reduce the binding of spacer domain autoantibodies. One N-glycan variant (NGLY3-ADAMTS13, containing a K608N substitution) showed strongly reduced reactivity with TTP patient sera (28%) as compared with WT-ADAMTS13 (100%). Insertion of an N-glycan at amino acid position 608 did not interfere with processing of von Willebrand factor, positioning the resulting NGLY3-ADAMTS13 variant as a potential novel therapeutic option for treatment of iTTP.


Asunto(s)
Proteína ADAMTS13/inmunología , Complejo Antígeno-Anticuerpo/química , Reacciones Antígeno-Anticuerpo , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Polisacáridos/inmunología , Púrpura Trombocitopénica Trombótica/inmunología , Proteína ADAMTS13/química , Proteína ADAMTS13/metabolismo , Sustitución de Aminoácidos , Aminoácidos , Anticuerpos Monoclonales/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Autoanticuerpos/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Factor de von Willebrand/metabolismo
6.
Transfusion ; 63(3): 564-573, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36722460

RESUMEN

BACKGROUND: Biomonitoring may provide important insights into the impact of a whole blood donation for individual blood donors. STUDY DESIGN AND METHODS: Here, we used unbiased mass spectrometry (MS)-based proteomics to assess longitudinal changes in the global plasma proteome, after a single blood donation for new and regular donors. Subsequently, we compared plasma proteomes of 76 male and female whole blood donors, that were grouped based on their ferritin and hemoglobin (Hb) levels. RESULTS: The longitudinal analysis showed limited changes in the plasma proteomes of new and regular donors after a whole blood donation during a 180-day follow-up period, apart from a significant short-term decrease in fibronectin. No differences were observed in the plasma proteomes of donors with high versus low Hb and/or ferritin levels. Plasma proteins with the highest variation between and within donors included pregnancy zone protein, which was associated with sex, Alfa 1-antitrypsin which was associated with the allelic variation, and Immunoglobulin D. Coexpression analysis revealed clustering of proteins that are associated with platelet, red cell, and neutrophil signatures as well as with the complement system and immune responses, including a prominent correlating cluster of immunoglobulin M (IgM), immunoglobulin J chain (JCHAIN), and CD5 antigen-like (CD5L). DISCUSSION: Overall, our proteomic approach shows that whole blood donation has a limited impact on the plasma proteins measured. Our findings suggest that plasma profiling can be successfully employed to consistently detect proteins and protein complexes that reflect the functionality and integrity of platelets, red blood cells, and immune cells in blood donors and thus highlights its potential use for donor health monitoring.


Asunto(s)
Donación de Sangre , Proteoma , Humanos , Masculino , Femenino , Proteómica , Eritrocitos/química , Donantes de Sangre , Ferritinas , Hemoglobinas/análisis
7.
Proc Natl Acad Sci U S A ; 117(12): 6686-6696, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32161126

RESUMEN

Cytotoxic CD8+ T cells can effectively kill target cells by producing cytokines, chemokines, and granzymes. Expression of these effector molecules is however highly divergent, and tools that identify and preselect CD8+ T cells with a cytotoxic expression profile are lacking. Human CD8+ T cells can be divided into IFN-γ- and IL-2-producing cells. Unbiased transcriptomics and proteomics analysis on cytokine-producing fixed CD8+ T cells revealed that IL-2+ cells produce helper cytokines, and that IFN-γ+ cells produce cytotoxic molecules. IFN-γ+ T cells expressed the surface marker CD29 already prior to stimulation. CD29 also marked T cells with cytotoxic gene expression from different tissues in single-cell RNA-sequencing data. Notably, CD29+ T cells maintained the cytotoxic phenotype during cell culture, suggesting a stable phenotype. Preselecting CD29-expressing MART1 TCR-engineered T cells potentiated the killing of target cells. We therefore propose that CD29 expression can help evaluate and select for potent therapeutic T cell products.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citotoxicidad Inmunológica/inmunología , Integrina beta1/metabolismo , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Melanoma/patología , Linfocitos T Citotóxicos/inmunología , Perfilación de la Expresión Génica , Humanos , Melanoma/inmunología , Melanoma/metabolismo , Pronóstico , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Tasa de Supervivencia
8.
Blood ; 136(23): 2703-2714, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678887

RESUMEN

The assembly of the enzyme-activated factor IX (FIXa) with its cofactor, activated factor VIII (FVIIIa) is a crucial event in the coagulation cascade. The absence or dysfunction of either enzyme or cofactor severely compromises hemostasis and causes hemophilia. FIXa is a notoriously inefficient enzyme that needs FVIIIa to drive its hemostatic potential, by a mechanism that has remained largely elusive to date. In this study, we employed hydrogen-deuterium exchange-mass spectrometry (HDX-MS) to investigate how FIXa responds to assembly with FVIIIa in the presence of phospholipids. This revealed a complex pattern of changes that partially overlaps with those changes that occur upon occupation of the substrate-binding site by an active site-directed inhibitor. Among the changes driven by both cofactor and substrate, HDX-MS highlighted several surface loops that have been implicated in allosteric networks in related coagulation enzymes. Inspection of FVIIIa-specific changes indicated that 3 helices are involved in FIXa-FVIIIa assembly. These are part of a basic interface that is also known as exosite II. Mutagenesis of basic residues herein, followed by functional studies, identified this interface as an extended FVIIIa-interactive patch. HDX-MS was also applied to recombinant FIXa variants that are associated with severe hemophilia B. This revealed that single amino acid substitutions can silence the extended network of FVIIIa-driven allosteric changes. We conclude that HDX-MS has the potential to visualize the functional impact of disease-associated mutations on enzyme-cofactor complexes in the hemostatic system.


Asunto(s)
Medición de Intercambio de Deuterio , Factor IXa/química , Factor VIII/química , Espectrometría de Masas , Mutación , Regulación Alostérica/genética , Factor IXa/genética , Factor IXa/metabolismo , Factor VIII/genética , Factor VIII/metabolismo , Hemofilia B/genética , Hemofilia B/metabolismo , Humanos , Conformación Proteica en Hélice alfa , Dominios Proteicos
9.
Blood ; 135(24): 2171-2181, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32128589

RESUMEN

Megakaryoblastic leukemia 1 (MKL1) promotes the regulation of essential cell processes, including actin cytoskeletal dynamics, by coactivating serum response factor. Recently, the first human with MKL1 deficiency, leading to a novel primary immunodeficiency, was identified. We report a second family with 2 siblings with a homozygous frameshift mutation in MKL1. The index case died as an infant from progressive and severe pneumonia caused by Pseudomonas aeruginosa and poor wound healing. The younger sibling was preemptively transplanted shortly after birth. The immunodeficiency was marked by a pronounced actin polymerization defect and a strongly reduced motility and chemotactic response by MKL1-deficient neutrophils. In addition to the lack of MKL1, subsequent proteomic and transcriptomic analyses of patient neutrophils revealed actin and several actin-related proteins to be downregulated, confirming a role for MKL1 as a transcriptional coregulator. Degranulation was enhanced upon suboptimal neutrophil activation, whereas production of reactive oxygen species was normal. Neutrophil adhesion was intact but without proper spreading. The latter could explain the observed failure in firm adherence and transendothelial migration under flow conditions. No apparent defect in phagocytosis or bacterial killing was found. Also, monocyte-derived macrophages showed intact phagocytosis, and lymphocyte counts and proliferative capacity were normal. Nonhematopoietic primary fibroblasts demonstrated defective differentiation into myofibroblasts but normal migration and F-actin content, most likely as a result of compensatory mechanisms of MKL2, which is not expressed in neutrophils. Our findings extend current insight into the severe immune dysfunction in MKL1 deficiency, with cytoskeletal dysfunction and defective extravasation of neutrophils as the most prominent features.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Mutación del Sistema de Lectura , Neutrófilos/fisiología , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/metabolismo , Transactivadores/deficiencia , Transactivadores/genética , Citoesqueleto de Actina/química , Movimiento Celular/genética , Movimiento Celular/fisiología , Consanguinidad , Femenino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Humanos , Lactante , Masculino , Linaje , Polimerizacion , Enfermedades de Inmunodeficiencia Primaria/terapia , Proteómica , Factores de Transcripción/metabolismo
10.
Haematologica ; 107(8): 1827-1839, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081689

RESUMEN

Von Willebrand factor (VWF) is a multimeric hemostatic protein primarily synthesized in endothelial cells. VWF is stored in endothelial storage organelles, the Weibel-Palade bodies (WPB), whose biogenesis strongly depends on VWF anterograde trafficking and Golgi architecture. Elongated WPB morphology is correlated to longer VWF strings with better adhesive properties. We previously identified the SNARE SEC22B, which is involved in anterograde endoplasmic reticulum-to-Golgi transport, as a novel regulator of WPB elongation. To elucidate novel determinants of WPB morphology we explored endothelial SEC22B interaction partners in a mass spectrometry-based approach, identifying the Golgi SNARE Syntaxin 5 (STX5). We established STX5 knockdown in endothelial cells using shRNA-dependent silencing and analyzed WPB and Golgi morphology, using confocal and electron microscopy. STX5-depleted endothelial cells exhibited extensive Golgi fragmentation and decreased WPB length, which was associated with reduced intracellular VWF levels, and impaired stimulated VWF secretion. However, the secretion-incompetent organelles in shSTX5 cells maintained WPB markers such as Angiopoietin 2, P-selectin, Rab27A, and CD63. In brief, we identified SNARE protein STX5 as a novel regulator of WPB biogenesis.


Asunto(s)
Cuerpos de Weibel-Palade , Factor de von Willebrand , Tamaño Corporal , Células Cultivadas , Células Endoteliales/metabolismo , Exocitosis , Humanos , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Cuerpos de Weibel-Palade/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
11.
FASEB J ; 34(4): 5435-5452, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086861

RESUMEN

Osteolineage cell-derived extracellular vesicles (EVs) play a regulatory role in hematopoiesis and have been shown to promote the ex vivo expansion of human hematopoietic stem and progenitor cells (HSPCs). Here, we demonstrate that EVs from different human osteolineage sources do not have the same HSPC expansion promoting potential. Comparison of stimulatory and non-stimulatory osteolineage EVs by next-generation sequencing and mass spectrometry analyses revealed distinct microRNA and protein signatures identifying EV-derived candidate regulators of ex vivo HSPC expansion. Accordingly, the treatment of umbilical cord blood-derived CD34+ HSPCs with stimulatory EVs-altered HSPC transcriptome, including genes with known roles in cell proliferation. An integrative bioinformatics approach, which connects the HSPC gene expression data with the candidate cargo in stimulatory EVs, delineated the potentially targeted biological functions and pathways during hematopoietic cell expansion and development. In conclusion, our study gives novel insights into the complex biological role of EVs in osteolineage cell-HSPC crosstalk and promotes the utility of EVs and their cargo as therapeutic agents in regenerative medicine.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Vesículas Extracelulares/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/citología , Osteoblastos/citología , Antígenos CD34/metabolismo , Proliferación Celular , Células Cultivadas , Células Madre Hematopoyéticas/metabolismo , Humanos , Osteoblastos/metabolismo , Transcriptoma
12.
J Immunol ; 200(5): 1790-1801, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29386254

RESUMEN

Leukocyte transendothelial migration is key to inflammation. Leukocytes first start rolling over the inflamed endothelium, followed by firmly adhering to it. Under inflammatory conditions, endothelial cells express small finger-like protrusions that stick out into the lumen. The function and regulation of these structures are unclear. We present evidence that these ICAM-1- and F-actin-rich endothelial finger-like protrusions are filopodia and function as adhesive structures for leukocytes to transit from rolling to crawling but are dispensable for diapedesis. Mechanistically, these structures require the motor function of myosin-X, activity of the small GTPase Cdc42, and p21-activated kinase 4. Moreover, myosin-X expression is under control of TNF-α-mediated c-Jun N-terminal kinase activity and is upregulated in human atherosclerotic regions. To our knowledge, this is the first study to identify that regulation of endothelial filopodia is crucial for leukocyte extravasation, in particular for the initiation of leukocyte adhesion under flow conditions.


Asunto(s)
Células Endoteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo , Actinas/metabolismo , Adhesión Celular/fisiología , Línea Celular , Línea Celular Tumoral , Endotelio Vascular/metabolismo , Células HL-60 , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Transducción de Señal/fisiología , Migración Transendotelial y Transepitelial/fisiología , Regulación hacia Arriba/fisiología
13.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32024018

RESUMEN

Megakaryopoiesis is the process during which megakaryoblasts differentiate to polyploid megakaryocytes that can subsequently shed thousands of platelets in the circulation. Megakaryocytes accumulate mRNA during their maturation, which is required for the correct spatio-temporal production of cytoskeletal proteins, membranes and platelet-specific granules, and for the subsequent shedding of thousands of platelets per cell. Gene expression profiling identified the RNA binding protein ATAXIN2 (ATXN2) as a putative novel regulator of megakaryopoiesis. ATXN2 expression is high in CD34+/CD41+ megakaryoblasts and sharply decreases upon maturation to megakaryocytes. ATXN2 associates with DDX6 suggesting that it may mediate repression of mRNA translation during early megakaryopoiesis. Comparative transcriptome and proteome analysis on megakaryoid cells (MEG-01) with differential ATXN2 expression identified ATXN2 dependent gene expression of mRNA and protein involved in processes linked to hemostasis. Mice deficient for Atxn2 did not display differences in bleeding times, but the expression of key surface receptors on platelets, such as ITGB3 (carries the CD61 antigen) and CD31 (PECAM1), was deregulated and platelet aggregation upon specific triggers was reduced.


Asunto(s)
Ataxina-2/genética , Perfilación de la Expresión Génica/métodos , Células Progenitoras de Megacariocitos/citología , Animales , Antígenos CD34/genética , Ataxina-2/metabolismo , Diferenciación Celular , Línea Celular , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica , Humanos , Ratones , Glicoproteína IIb de Membrana Plaquetaria/genética , Proteínas Proto-Oncogénicas/genética
14.
Haematologica ; 104(10): 2091-2099, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30630984

RESUMEN

Weibel-Palade bodies are endothelial secretory organelles that contain von Willebrand factor, P-selectin and CD63. Release of von Willebrand factor from Weibel-Palade bodies is crucial for platelet adhesion during primary hemostasis. Endosomal trafficking of proteins like CD63 to Weibel-Palade bodies during maturation is dependent on the adaptor protein complex 3 complex. Mutations in the AP3B1 gene, which encodes the adaptor protein complex 3 ß1 subunit, result in Hermansky-Pudlak syndrome 2, a rare genetic disorder that leads to neutropenia and a mild bleeding diathesis. This is caused by abnormal granule formation in neutrophils and platelets due to defects in trafficking of cargo to secretory organelles. The impact of these defects on the secretory pathway of the endothelium is largely unknown. In this study, we investigated the role of adaptor protein complex 3-dependent mechanisms in trafficking of proteins during Weibel-Palade body maturation in endothelial cells. An ex vivo patient-derived endothelial model of Hermansky-Pudlak syndrome type 2 was established using blood outgrowth endothelial cells that were isolated from a patient with compound heterozygous mutations in AP3B1 Hermansky-Pudlak syndrome type 2 endothelial cells and CRISPR-Cas9-engineered AP3B1-/- endothelial cells contain Weibel-Palade bodies that are entirely devoid of CD63, indicative of disrupted endosomal trafficking. Hermansky-Pudlak syndrome type 2 endothelial cells have impaired Ca2+-mediated and cAMP-mediated exocytosis. Whole proteome analysis revealed that, apart from adaptor protein complex 3 ß1, also the µ1 subunit and the v-SNARE VAMP8 were depleted. Stimulus-induced von Willebrand factor secretion was impaired in CRISPR-Cas9-engineered VAMP8-/-endothelial cells. Our data show that defects in adaptor protein complex 3-dependent maturation of Weibel-Palade bodies impairs exocytosis by affecting the recruitment of VAMP8.


Asunto(s)
Complejo 3 de Proteína Adaptadora , Subunidades beta de Complejo de Proteína Adaptadora , Células Endoteliales , Exocitosis , Síndrome de Hermanski-Pudlak , Proteínas R-SNARE/metabolismo , Cuerpos de Weibel-Palade , Complejo 3 de Proteína Adaptadora/genética , Complejo 3 de Proteína Adaptadora/metabolismo , Subunidades beta de Complejo de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Señalización del Calcio , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/patología , Humanos , Mutación , Transporte de Proteínas , Proteínas R-SNARE/genética , Cuerpos de Weibel-Palade/genética , Cuerpos de Weibel-Palade/metabolismo , Cuerpos de Weibel-Palade/patología
15.
Haematologica ; 104(7): 1460-1472, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30655368

RESUMEN

Dominant-negative mutations in the transcription factor Growth Factor Independence-1B (GFI1B), such as GFI1BQ287*, cause a bleeding disorder characterized by a plethora of megakaryocyte and platelet abnormalities. The deregulated molecular mechanisms and pathways are unknown. Here we show that both normal and Q287* mutant GFI1B interacted most strongly with the lysine specific demethylase-1 - REST corepressor - histone deacetylase (LSD1-RCOR-HDAC) complex in megakaryoblasts. Sequestration of this complex by GFI1BQ287* and chemical separation of GFI1B from LSD1 induced abnormalities in normal megakaryocytes comparable to those seen in patients. Megakaryocytes derived from GFI1BQ287*-induced pluripotent stem cells also phenocopied abnormalities seen in patients. Proteome studies on normal and mutant-induced pluripotent stem cell-derived megakaryocytes identified a multitude of deregulated pathways downstream of GFI1BQ287* including cell division and interferon signaling. Proteome studies on platelets from GFI1BQ287* patients showed reduced expression of proteins implicated in platelet function, and elevated expression of proteins normally downregulated during megakaryocyte differentiation. Thus, GFI1B and LSD1 regulate a broad developmental program during megakaryopoiesis, and GFI1BQ287* deregulates this program through LSD1-RCOR-HDAC sequestering.


Asunto(s)
Trastornos de la Coagulación Sanguínea/patología , Plaquetas/patología , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/patología , Megacariocitos/patología , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Trastornos de la Coagulación Sanguínea/genética , Trastornos de la Coagulación Sanguínea/metabolismo , Plaquetas/metabolismo , Diferenciación Celular , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Mapas de Interacción de Proteínas , Proteoma/análisis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo
16.
Hemoglobin ; 43(2): 77-82, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31190578

RESUMEN

A 4-year-old boy, a ß-thalassemia (ß-thal) carrier, with an unexplained severe chronic microcytic anemia was referred to us. Sequencing of the α-globin genes revealed a Hb Charlieu [α106(G13)Leu→Pro, HBA1: c.320T>C, p.Leu107Pro] mutation present on both HBA1 genes. Quantitative polymerase chain reaction (qPCR) confirmed αCharlieu mRNA in the proband and his parents, showing that the mutation does not affect mRNA stability. However, we were unable to detect the Hb Charlieu protein by capillary electrophoresis (CE), reverse phase electrophoresis, cation exchange electrophoresis or isoelectric focusing. Mass spectrometry (MS) allowed us to confirm the presence of the Hb Charlieu peptide in erythrocyte progenitors. These findings suggest that the mutation affects the stability of αCharlieu. As hemoglobin (Hb) heat stability tests showed no abnormalities in erythrocytes, we speculated that αCharlieu is already degraded during red blood cell (RBC) development. The clinical severity in the proband and the presence of new methylene blue-stained aggregates in his reticulocytes indicates that incorporation of αCharlieu destabilizes Hb. This, combined with an excess of unstable free α-globins as the result of ß-thal minor, results in severely impaired erythropoiesis and, as a consequence, severe and chronic microcytic anemia in the proband.


Asunto(s)
Homocigoto , Mutación/genética , Preescolar , Humanos , Masculino
17.
Blood ; 128(21): e51-e58, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27574189

RESUMEN

Patients suffering from acquired thrombotic thrombocytopenic purpura develop autoantibodies directed toward the plasma glycoprotein ADAMTS13. Here, we studied the glycan composition of plasma-derived ADAMTS13. Purified ADAMTS13 was reduced, alkylated, and processed into peptides with either trypsin or chymotrypsin. Glycopeptides were enriched using zwitterionic HILIC zip-tips and analyzed by tandem mass spectrometry employing higher-energy collision dissociation fragmentation. Upon detection of a diagnostic ion of a glycan fragment, electron transfer dissociation fragmentation was performed on the same precursor ion. The majority of N-linked glycans were of the complex type containing terminal sialic acids and fucose residues. A high mannose-containing glycan was attached to Asn614 in the spacer domain. Six O-linked glycans mostly terminating in sialic acid were found dispersed over ADAMTS13. Five O-linked glycans were attached to a Ser and one to Thr. All 6 O-linked glycans contained a terminal sialic acid. O-fucosylation is a common posttranslational modification of thrombospondin type 1 repeats. We identified 7 O-fucosylation sites in the thrombospondin (TSP) type 1 repeats. Unexpectedly, one additional O-fucosylation site was found in the disintegrin domain. This O-fucosylation site did not meet the proposed consensus sequence CSX(S/T)CG. C-mannosylation sites were identified in TSP1, linker TSP4-TSP5, and TSP8. Overall, our findings highlight the complexity of glycan modifications on ADAMTS13, which may have implications for its interaction with immune- or clearance receptors containing carbohydrate recognition domains.


Asunto(s)
Proteína ADAMTS13/química , Polisacáridos/química , Proteína ADAMTS13/aislamiento & purificación , Conformación de Carbohidratos , Glicosilación , Humanos
18.
Haematologica ; 103(1): 172-178, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29025906

RESUMEN

The development of anti-factor VIII antibodies is a major complication of the treatment of patients with hemophilia A. Generation of high affinity anti-factor VIII antibodies is dependent on help provided by CD4+ T cells that recognize factor VIII-derived peptides presented on class II major histocompatibility complex on the surface of antigen-presenting cells. In order to identify the immune-dominant epitopes that can be presented to CD4+ T cells, we previously developed a mass spectrometry-based method to identify factor VIII-derived peptides that are presented on human leukocyte antigen (HLA)-DR. In the present work, we compared the repertoire of FVIII-derived peptide presented on HLA-DR and HLA-DQ. Monocyte-derived dendritic cells from nine HLA-typed healthy donors were pulsed with recombinant factor VIII. HLA-DR and HLA-DQ molecules were purified using monoclonal antibodies. Our data show that HLA-DQ and HLA-DR present a similar repertoire of factor VIII-derived peptides. However, the number of peptides associated with HLA-DQ was lower than that with HLA-DR. We also identified a peptide, within the acidic a3 domains of factor VIII, which is presented with higher frequency on HLA-DQ. Interestingly, this peptide was found to have a higher predicted affinity for HLA-DQ than for HLA-DR. Taken together, our data suggest that HLA-DQ participates in the presentation of factor VIII peptides, thereby contributing to the development of inhibitory antibodies in a proportion of patients with severe hemophilia A.


Asunto(s)
Presentación de Antígeno/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Factor VIII/inmunología , Antígenos HLA-DQ/inmunología , Antígenos HLA-DR/inmunología , Péptidos/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Factor VIII/química , Perfilación de la Expresión Génica , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Hemofilia A/genética , Hemofilia A/inmunología , Humanos , Proteoma , Proteómica/métodos
19.
Haematologica ; 103(3): 395-405, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29284682

RESUMEN

The classical central macrophage found in erythroblastic islands plays an important role in erythroblast differentiation, proliferation and enucleation in the bone marrow. Convenient human in vitro models to facilitate the study of erythroid-macrophage interactions are desired. Recently, we demonstrated that cultured monocytes/macrophages enhance in vitro erythropoiesis by supporting hematopoietic stem and progenitor cell survival. Herein, we describe that these specific macrophages also support erythropoiesis. Human monocytes cultured in serum-free media supplemented with stem cell factor, erythropoietin, lipids and dexamethasone differentiate towards macrophages expressing CD16, CD163, CD169, CD206, CXCR4 and the phagocytic TAM-receptor family. Phenotypically, they resemble both human bone marrow and fetal liver resident macrophages. This differentiation is dependent on glucocorticoid receptor activation. Proteomic studies confirm that glucocorticoid receptor activation differentiates monocytes to anti-inflammatory tissue macrophages with a M2 phenotype, termed GC-macrophages. Proteins involved in migration, tissue residence and signal transduction/receptor activity are upregulated whilst lysosome and hydrolase activity GO-categories are downregulated. Functionally, we demonstrate that GC-macrophages are highly mobile and can interact to form clusters with erythroid cells of all differentiation stages and phagocytose the expelled nuclei, recapitulating aspects of erythroblastic islands. In conclusion, glucocorticoid-directed monocyte differentiation to macrophages represents a convenient model system to study erythroid-macrophage interactions.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Glucocorticoides/farmacología , Macrófagos/citología , Monocitos/citología , Comunicación Celular , Células Cultivadas , Células Eritroides/citología , Eritropoyesis , Humanos , Monocitos/efectos de los fármacos , Proteómica
20.
Haematologica ; 103(6): 1083-1092, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29567779

RESUMEN

Formation of microthrombi is a hallmark of acquired thrombotic thrombocytopenic purpura. These microthrombi originate from insufficient processing of ultra large von Willebrand factor multimers by ADAMTS13 due to the development of anti-ADAMTS13 autoantibodies. Several studies have identified the major histocompatibility complex class II alleles HLA-DRB1*11, HLA-DQB1*03 and HLA-DQB1*02:02 as risk factors for acquired thrombotic thrombocytopenic purpura development. Previous research in our department indicated that ADAMTS13 CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR are presented on HLA-DRB1*11 and HLA-DRB1*03, respectively. Here, we describe the repertoire of ADAMTS13 peptides presented on HLA-DQ. In parallel, the repertoire of ADAMTS13-derived peptides presented on HLA-DR was monitored. Using HLA-DR- and HLA-DQ-specific antibodies, we purified HLA/peptide complexes from ADAMTS13-pulsed monocyte-derived dendritic cells. Using this approach, we identified ADAMTS13-derived peptides presented on HLA-DR for all 9 samples analyzed; ADAMTS13-derived peptides presented on HLA-DQ were identified in 4 out of 9 samples. We were able to confirm the presentation of the CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR on HLA-DR. In total, 12 different core-peptide sequences were identified on HLA-DR and 8 on HLA-DQ. For HLA-DR11, several potential new core-peptides were found; 4 novel core-peptides were exclusively identified on HLA-DQ. Furthermore, an in silico analysis was performed using the EpiMatrix and JanusMatrix tools to evaluate the eluted peptides, in the context of HLA-DR, for putative effector or regulatory T-cell responses at the population level. The results from this study provide a basis for the identification of immuno-dominant epitopes on ADAMTS13 involved in the onset of acquired thrombotic thrombocytopenic purpura.


Asunto(s)
Proteína ADAMTS13/química , Proteína ADAMTS13/inmunología , Antígenos HLA-DQ/inmunología , Antígenos HLA-DR/inmunología , Espectrometría de Masas , Péptidos/química , Péptidos/inmunología , Proteína ADAMTS13/metabolismo , Animales , Presentación de Antígeno , Células Dendríticas , Mapeo Epitopo/métodos , Genotipo , Células HEK293 , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/metabolismo , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Espectrometría de Masas/métodos , Ratones , Péptidos/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA