Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(15): 3936-3948.e10, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34192529

RESUMEN

In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , ARN Mensajero/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Unión Competitiva , Humanos , Inmunoglobulina G/metabolismo , Mutación/genética , Dominios Proteicos , Hipermutación Somática de Inmunoglobulina/genética
2.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32559462

RESUMEN

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Asunto(s)
Caperuzas de ARN/genética , Infecciones por Virus ARN/genética , Proteínas Recombinantes de Fusión/genética , Regiones no Traducidas 5'/genética , Animales , Bovinos , Línea Celular , Cricetinae , Perros , Humanos , Virus de la Influenza A/metabolismo , Ratones , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Sistemas de Lectura Abierta/genética , Caperuzas de ARN/metabolismo , Infecciones por Virus ARN/metabolismo , Virus ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
3.
Immunity ; 57(3): 587-599.e4, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38395697

RESUMEN

It is thought that mRNA-based vaccine-induced immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wanes quickly, based mostly on short-term studies. Here, we analyzed the kinetics and durability of the humoral responses to SARS-CoV-2 infection and vaccination using >8,000 longitudinal samples collected over a 3-year period in New York City. Upon primary immunization, participants with pre-existing immunity mounted higher antibody responses faster and achieved higher steady-state antibody titers than naive individuals. Antibody kinetics were characterized by two phases: an initial rapid decay, followed by a stabilization phase with very slow decay. Booster vaccination equalized the differences in antibody concentration between participants with and without hybrid immunity, but the peak antibody titers decreased with each successive antigen exposure. Breakthrough infections increased antibodies to similar titers as an additional vaccine dose in naive individuals. Our study provides strong evidence that SARS-CoV-2 antibody responses are long lasting, with initial waning followed by stabilization.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2 , Formación de Anticuerpos , Vacunación , Inmunización Secundaria , Vacunas de ARNm , Anticuerpos Antivirales
4.
Cell ; 169(4): 679-692.e14, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475896

RESUMEN

The nuclear RNA exosome is an essential multi-subunit complex that controls RNA homeostasis. Congenital mutations in RNA exosome genes are associated with neurodegenerative diseases. Little is known about the role of the RNA exosome in the cellular response to pathogens. Here, using NGS and human and mouse genetics, we show that influenza A virus (IAV) ribogenesis and growth are suppressed by impaired RNA exosome activity. Mechanistically, the nuclear RNA exosome coordinates the initial steps of viral transcription with RNAPII at host promoters. The viral polymerase complex co-opts the nuclear RNA exosome complex and cellular RNAs en route to 3' end degradation. Exosome deficiency uncouples chromatin targeting of the viral polymerase complex and the formation of cellular:viral RNA hybrids, which are essential RNA intermediates that license transcription of antisense genomic viral RNAs. Our results suggest that evolutionary arms races have shaped the cellular RNA quality control machinery.


Asunto(s)
Interacciones Huésped-Patógeno , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Gripe Humana/virología , ARN Polimerasa II/metabolismo , Células A549 , Animales , Inmunoprecipitación de Cromatina , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/metabolismo , Humanos , Espectrometría de Masas , Ratones , Mutación , Enfermedades Neurodegenerativas/virología , Proteínas de Unión al ARN/genética , Ribosomas/genética , Transcripción Genética
5.
Cell ; 158(6): 1431-1443, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25215497

RESUMEN

Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.


Asunto(s)
Arabidopsis/genética , Motivos de Nucleótidos , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Humanos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Unión Proteica , Sitios de Carácter Cuantitativo
6.
Cell ; 157(3): 740-52, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766815

RESUMEN

To understand regulatory systems, it would be useful to uniformly determine how different components contribute to the expression of all other genes. We therefore monitored mRNA expression genome-wide, for individual deletions of one-quarter of yeast genes, focusing on (putative) regulators. The resulting genetic perturbation signatures reflect many different properties. These include the architecture of protein complexes and pathways, identification of expression changes compatible with viability, and the varying responsiveness to genetic perturbation. The data are assembled into a genetic perturbation network that shows different connectivities for different classes of regulators. Four feed-forward loop (FFL) types are overrepresented, including incoherent type 2 FFLs that likely represent feedback. Systematic transcription factor classification shows a surprisingly high abundance of gene-specific repressors, suggesting that yeast chromatin is not as generally restrictive to transcription as is often assumed. The data set is useful for studying individual genes and for discovering properties of an entire regulatory system.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Técnicas Genéticas , Saccharomyces cerevisiae/genética , Transcriptoma , Eliminación de Gen , Técnicas de Inactivación de Genes
7.
Nature ; 602(7898): 682-688, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35016197

RESUMEN

The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in November 2021 in South Africa and Botswana, as well as in a sample from a traveller from South Africa in Hong Kong1,2. Since then, Omicron has been detected globally. This variant appears to be at least as infectious as Delta (B.1.617.2), has already caused superspreader events3, and has outcompeted Delta within weeks in several countries and metropolitan areas. Omicron hosts an unprecedented number of mutations in its spike gene and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness2,4-6. Here we investigated the virus-neutralizing and spike protein-binding activity of sera from convalescent, double mRNA-vaccinated, mRNA-boosted, convalescent double-vaccinated and convalescent boosted individuals against wild-type, Beta (B.1.351) and Omicron SARS-CoV-2 isolates and spike proteins. Neutralizing activity of sera from convalescent and double-vaccinated participants was undetectable or very low against Omicron compared with the wild-type virus, whereas neutralizing activity of sera from individuals who had been exposed to spike three or four times through infection and vaccination was maintained, although at significantly reduced levels. Binding to the receptor-binding and N-terminal domains of the Omicron spike protein was reduced compared with binding to the wild type in convalescent unvaccinated individuals, but was mostly retained in vaccinated individuals.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , Convalecencia , Evasión Inmune/inmunología , Sueros Inmunes/inmunología , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273/inmunología , Adulto , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/transmisión , Femenino , Humanos , Inmunización Secundaria , Modelos Moleculares , Pruebas de Neutralización , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
8.
Nature ; 603(7902): 687-692, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35062015

RESUMEN

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Asunto(s)
COVID-19/patología , COVID-19/virología , Modelos Animales de Enfermedad , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Cricetinae , Femenino , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Carga Viral
9.
Nat Immunol ; 16(5): 485-94, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25822250

RESUMEN

The human helicase senataxin (SETX) has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS4) and ataxia with oculomotor apraxia (AOA2). Here we identified a role for SETX in controlling the antiviral response. Cells that had undergone depletion of SETX and SETX-deficient cells derived from patients with AOA2 had higher expression of antiviral mediators in response to infection than did wild-type cells. Mechanistically, we propose a model whereby SETX attenuates the activity of RNA polymerase II (RNAPII) at genes stimulated after a virus is sensed and thus controls the magnitude of the host response to pathogens and the biogenesis of various RNA viruses (e.g., influenza A virus and West Nile virus). Our data indicate a potentially causal link among inborn errors in SETX, susceptibility to infection and the development of neurologic disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Gripe Humana/inmunología , Orthomyxoviridae/fisiología , ARN Helicasas/metabolismo , ARN Polimerasa II/metabolismo , Degeneraciones Espinocerebelosas/genética , Fiebre del Nilo Occidental/inmunología , Virus del Nilo Occidental/fisiología , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Citocinas/metabolismo , ADN Helicasas , Perros , Regulación hacia Abajo , Humanos , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Ratones Noqueados , Análisis por Micromatrices , Enzimas Multifuncionales , ARN Helicasas/genética , ARN Polimerasa II/genética , ARN Interferente Pequeño/genética , Ataxias Espinocerebelosas/congénito , Células Vero , Replicación Viral/genética
10.
Nature ; 590(7844): 146-150, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33142304

RESUMEN

In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in China and has since caused a pandemic of coronavirus disease 2019 (COVID-19). The first case of COVID-19 in New York City was officially confirmed on 1 March 2020 followed by a severe local epidemic1. Here, to understand seroprevalence dynamics, we conduct a retrospective, repeated cross-sectional analysis of anti-SARS-CoV-2 spike antibodies in weekly intervals from the beginning of February to July 2020 using more than 10,000 plasma samples from patients at Mount Sinai Hospital in New York City. We describe the dynamics of seroprevalence in an 'urgent care' group, which is enriched in cases of COVID-19 during the epidemic, and a 'routine care' group, which more closely represents the general population. Seroprevalence increased at different rates in both groups; seropositive samples were found as early as mid-February, and levelled out at slightly above 20% in both groups after the epidemic wave subsided by the end of May. From May to July, seroprevalence remained stable, suggesting lasting antibody levels in the population. Our data suggest that SARS-CoV-2 was introduced in New York City earlier than previously documented and describe the dynamics of seroconversion over the full course of the first wave of the pandemic in a major metropolitan area.


Asunto(s)
Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/inmunología , Monitoreo Epidemiológico , SARS-CoV-2/inmunología , Adolescente , Adulto , Atención Ambulatoria/estadística & datos numéricos , COVID-19/diagnóstico , COVID-19/virología , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Ciudad de Nueva York/epidemiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo , Población Urbana/estadística & datos numéricos , Adulto Joven
11.
Immunity ; 44(1): 46-58, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26789921

RESUMEN

Viruses are obligate parasites and thus require the machinery of the host cell to replicate. Inhibition of host factors co-opted during active infection is a strategy hosts use to suppress viral replication and a potential pan-antiviral therapy. To define the cellular proteins and processes required for a virus during infection is thus crucial to understanding the mechanisms of virally induced disease. In this report, we generated fully infectious tagged influenza viruses and used infection-based proteomics to identify pivotal arms of cellular signaling required for influenza virus growth and infectivity. Using mathematical modeling and genetic and pharmacologic approaches, we revealed that modulation of Sec61-mediated cotranslational translocation selectively impaired glycoprotein proteostasis of influenza as well as HIV and dengue viruses and led to inhibition of viral growth and infectivity. Thus, by studying virus-human protein-protein interactions in the context of active replication, we have identified targetable host factors for broad-spectrum antiviral therapies.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Virus de la Influenza A/fisiología , Virus de la Influenza A/patogenicidad , Modelos Teóricos , Replicación Viral/fisiología , Virus del Dengue/patogenicidad , Virus del Dengue/fisiología , VIH/patogenicidad , VIH/fisiología , Humanos , Inmunoprecipitación , Espectrometría de Masas , Pliegue de Proteína , Proteómica
12.
Infect Immun ; 91(4): e0053222, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36939325

RESUMEN

Staphylococcus aureus is a successful pathogen that produces a wide range of virulence factors that it uses to subvert and suppress the immune system. These include the bicomponent pore-forming leukocidins. How the expression of these toxins is regulated is not completely understood. Here, we describe a screen to identify transcription factors involved in the regulation of leukocidins. The most prominent discovery from this screen is that SarS, a known transcription factor which had previously been described as a repressor of alpha-toxin expression, was found to be a potent repressor of leukocidins LukED and LukSF-PV. We found that inactivating sarS resulted in increased virulence both in an ex vivo model using primary human neutrophils and in an in vivo infection model in mice. Further experimentation revealed that SarS represses leukocidins by serving as an activator of Rot, a critical repressor of toxins, as well as by directly binding and repressing the leukocidin promoters. By studying contemporary clinical isolates, we identified naturally occurring mutations in the sarS promoter that resulted in overexpression of sarS and increased repression of leukocidins in USA300 bloodstream clinical isolates. Overall, these data establish SarS as an important repressor of leukocidins and expand our understanding of how these virulence factors are being regulated in vitro and in vivo by S. aureus.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Humanos , Ratones , Exotoxinas/genética , Exotoxinas/metabolismo , Leucocidinas/genética , Neutrófilos , Factores de Transcripción/metabolismo , Factores de Virulencia/metabolismo
13.
Emerg Infect Dis ; 29(4): 786-791, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958010

RESUMEN

We report the spillover of highly pathogenic avian influenza A(H5N1) into marine mammals in the northeastern United States, coincident with H5N1 in sympatric wild birds. Our data indicate monitoring both wild coastal birds and marine mammals will be critical to determine pandemic potential of influenza A viruses.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Phocidae , Animales , Gripe Aviar/epidemiología , Aves , Brotes de Enfermedades , Animales Salvajes , New England/epidemiología
14.
Emerg Infect Dis ; 29(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054986

RESUMEN

Since late 2020, SARS-CoV-2 variants have regularly emerged with competitive and phenotypic differences from previously circulating strains, sometimes with the potential to escape from immunity produced by prior exposure and infection. The Early Detection group is one of the constituent groups of the US National Institutes of Health National Institute of Allergy and Infectious Diseases SARS-CoV-2 Assessment of Viral Evolution program. The group uses bioinformatic methods to monitor the emergence, spread, and potential phenotypic properties of emerging and circulating strains to identify the most relevant variants for experimental groups within the program to phenotypically characterize. Since April 2021, the group has prioritized variants monthly. Prioritization successes include rapidly identifying most major variants of SARS-CoV-2 and providing experimental groups within the National Institutes of Health program easy access to regularly updated information on the recent evolution and epidemiology of SARS-CoV-2 that can be used to guide phenotypic investigations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Estados Unidos/epidemiología , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , National Institutes of Health (U.S.)
15.
N Engl J Med ; 383(25): 2407-2416, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33176093

RESUMEN

BACKGROUND: The efficacy of public health measures to control the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been well studied in young adults. METHODS: We investigated SARS-CoV-2 infections among U.S. Marine Corps recruits who underwent a 2-week quarantine at home followed by a second supervised 2-week quarantine at a closed college campus that involved mask wearing, social distancing, and daily temperature and symptom monitoring. Study volunteers were tested for SARS-CoV-2 by means of quantitative polymerase-chain-reaction (qPCR) assay of nares swab specimens obtained between the time of arrival and the second day of supervised quarantine and on days 7 and 14. Recruits who did not volunteer for the study underwent qPCR testing only on day 14, at the end of the quarantine period. We performed phylogenetic analysis of viral genomes obtained from infected study volunteers to identify clusters and to assess the epidemiologic features of infections. RESULTS: A total of 1848 recruits volunteered to participate in the study; within 2 days after arrival on campus, 16 (0.9%) tested positive for SARS-CoV-2, 15 of whom were asymptomatic. An additional 35 participants (1.9%) tested positive on day 7 or on day 14. Five of the 51 participants (9.8%) who tested positive at any time had symptoms in the week before a positive qPCR test. Of the recruits who declined to participate in the study, 26 (1.7%) of the 1554 recruits with available qPCR results tested positive on day 14. No SARS-CoV-2 infections were identified through clinical qPCR testing performed as a result of daily symptom monitoring. Analysis of 36 SARS-CoV-2 genomes obtained from 32 participants revealed six transmission clusters among 18 participants. Epidemiologic analysis supported multiple local transmission events, including transmission between roommates and among recruits within the same platoon. CONCLUSIONS: Among Marine Corps recruits, approximately 2% who had previously had negative results for SARS-CoV-2 at the beginning of supervised quarantine, and less than 2% of recruits with unknown previous status, tested positive by day 14. Most recruits who tested positive were asymptomatic, and no infections were detected through daily symptom monitoring. Transmission clusters occurred within platoons. (Funded by the Defense Health Agency and others.).


Asunto(s)
Prueba de COVID-19 , COVID-19/transmisión , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Personal Militar , Cuarentena , SARS-CoV-2/aislamiento & purificación , Infecciones Asintomáticas , COVID-19/diagnóstico , COVID-19/epidemiología , Genoma Viral , Humanos , Masculino , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo , SARS-CoV-2/genética , South Carolina/epidemiología , Secuenciación Completa del Genoma , Adulto Joven
16.
Development ; 147(18)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958507

RESUMEN

The FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a 'big data' resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently. Summaries of the datasets generated by the FaceBase projects from 2014 to 2019 are provided here. FaceBase 3 now welcomes contributions of data on craniofacial and dental development in humans, model organisms and cell lines. Collectively, the FaceBase Consortium, along with other NIH-supported data resources, provide a continuously growing, dynamic and current resource for the scientific community while improving data reproducibility and fulfilling data sharing requirements.


Asunto(s)
Investigación Dental/métodos , Huesos Faciales/fisiología , Cráneo/fisiología , Animales , Bases de Datos Factuales , Humanos , Reproducibilidad de los Resultados , Investigadores
17.
J Virol ; 96(9): e0033222, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35446141

RESUMEN

Influenza virus neuraminidase (NA)-targeting antibodies are an independent correlate of protection against influenza. Antibodies against the NA act by blocking enzymatic activity, preventing virus release and transmission. As we advance the development of improved influenza virus vaccines that incorporate standard amounts of NA antigen, it is important to identify the antigenic targets of human monoclonal antibodies (mAbs). Here, we describe escape mutants generated by serial passage of A/Netherlands/602/2009 (H1N1)pdm09 in the presence of human anti-N1 mAbs. We observed escape mutations on the head domain of the N1 protein around the enzymatic site (S364N, N369T, and R430Q) and also detected escape mutations located on the sides and bottom of the NA (N88D, N270D, and Q313K/R). This work increases our understanding of how human antibody responses target the N1 protein. IMPORTANCE As improved influenza virus vaccines are being developed, the influenza virus neuraminidase (NA) is becoming an important new target for immune responses. By identifying novel epitopes of anti-NA antibodies, we can improve vaccine design. Additionally, characterizing escape mutations in these epitopes aids in identifying NA antigenic drift in circulating viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Monoclonales , Anticuerpos Antivirales/metabolismo , Epítopos/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Mutación , Neuraminidasa/química , Neuraminidasa/genética , Neuraminidasa/inmunología
18.
J Virol ; 96(2): e0142121, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34669506

RESUMEN

The public health burden caused by influenza virus infections is not adequately addressed with existing vaccines and antivirals. Identifying approaches that interfere with human-to-human transmission of influenza viruses remains a pressing need. The importance of neuraminidase (NA) activity for the replication and spread of influenza viruses led us to investigate whether broadly reactive human anti-NA monoclonal antibodies (MAbs) could affect airborne transmission of the virus using the guinea pig model. In that model, infection with recent influenza virus clinical isolates resulted in 100% transmission from inoculated donors to recipients in an airborne transmission setting. Anti-NA MAbs were administered either to the inoculated animals on days 1, 2, and 4 after infection or to the naive contacts on days 2 and 4 after donor infection. Administration of NA-1G01, a broadly cross-reactive anti-NA MAb, to either the donor or recipient reduced transmission of the A/New York City/PV02669/2019 (H1N1) and A/New York City/PV01148/2018 (H3N2) viruses. Administration of 1000-3C05, an anti-N1 MAb, to either the donor or recipient reduced transmission of A/New York City/PV02669/2019 (H1N1) virus but did not reduce transmission of A/New York City/PV01148 (H3N2) virus. Conversely, 229-2C06, an anti-N2 MAb, reduced transmission of A/New York City/PV01148 (H3N2) but did not impact transmission of A/New York City/PV02669/2019 (H1N1) virus. Our work demonstrates that anti-NA MAbs could be further developed into prophylactic or therapeutic agents to prevent influenza virus transmission to control viral spread. IMPORTANCE The burden of influenza remains substantial despite unremitting efforts to reduce the magnitude of seasonal influenza epidemics and prepare for pandemics. Although vaccination remains the mainstay of these efforts, current vaccines are designed to stimulate an immune response against the viral hemagglutinin. Interest in the role immunity against neuraminidase plays in influenza virus infection and transmission has recently surged. Human antibodies that bind broadly to neuraminidases of diverse influenza viruses and protect mice against lethal viral challenge have previously been characterized. Here, we show that three such antibodies inhibit the neuraminidase activity of recent isolates and reduce their airborne transmission in a guinea pig model. In addition to contributing to the accumulating support for incorporating neuraminidase as a vaccine antigen, these findings also demonstrate the potential of direct administration of anti-neuraminidase antibodies to individuals infected with influenza virus and to individuals for postexposure prophylaxis to prevent the spread of influenza virus.


Asunto(s)
Anticuerpos Antivirales/uso terapéutico , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Virales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , Cobayas , Humanos , Inmunización Pasiva , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/transmisión
19.
J Med Virol ; 95(5): e28788, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37212288

RESUMEN

Diagnosis by rapid antigen tests (RATs) is useful for early initiation of antiviral treatment. Because RATs are easy to use, they can be adapted for self-testing. Several kinds of RATs approved for such use by the Japanese regulatory authority are available from drug stores and websites. Most RATs for COVID-19 are based on antibody detection of the SARS-CoV-2 N protein. Since Omicron and its subvariants have accumulated several amino acid substitutions in the N protein, such amino acid changes might affect the sensitivity of RATs. Here, we investigated the sensitivity of seven RATs available in Japan, six of which are approved for public use and one of which is approved for clinical use, for the detection of BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1, as well as the delta variant (B.1.627.2). All tested RATs detected the delta variant with a detection level between 7500 and 75 000 pfu per test, and all tested RATs showed similar sensitivity to the Omicron variant and its subvariants (BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1). Human saliva did not reduce the sensitivity of the RATs tested. Espline SARS-CoV-2 N showed the highest sensitivity followed by Inspecter KOWA SARS-CoV-2 and V Trust SARS-CoV-2 Ag. Since the RATs failed to detect low levels of infectious virus, individuals whose specimens contained less infectious virus than the detection limit would be considered negative. Therefore, it is important to note that RATs may miss individuals shedding low levels of infectious virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sustitución de Aminoácidos , Antivirales
20.
J Med Virol ; 95(6): e28878, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37322614

RESUMEN

Monkeypox (MPOX) is a zoonotic disease that affects humans and other primates, resulting in a smallpox-like illness. It is caused by monkeypox virus (MPXV), which belongs to the Poxviridae family. Clinically manifested by a range of cutaneous and systemic findings, as well as variable disease severity phenotypes based on the genetic makeup of the virus, the cutaneous niche and respiratory mucosa are the epicenters of MPXV pathogenicity. Herein, we describe the ultrastructural features of MPXV infection in both human cultured cells and cutaneous clinical specimens collected during the 2022-2023 MPOX outbreak in New York City that were revealed through electron microscopy. We observed typical enveloped virions with brick-shaped morphologies that contained surface protrusions, consistent with the classic ultrastructural features of MPXV. In addition, we describe morpho-functional evidence that point to roles of distinct cellular organelles in viral assembly during clinical MPXV infection. Interestingly, in skin lesions, we found abundant melanosomes near viral assembly sites, particularly in the vicinity of mature virions, which provides further insight into virus-host interactions at the subcellular level that contribute to MPXV pathogenesis. These findings not only highlight the importance of electron microscopic studies for further investigation of this emerging pathogen but also in characterizing MPXV pathogenesis during human infection.


Asunto(s)
Mpox , Enfermedades de la Piel , Animales , Humanos , Monkeypox virus/genética , Virulencia , Primates , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA