RESUMEN
Tumor-targeting monoclonal antibodies are available for a number of cancer cell types (over)expressing the corresponding tumor antigens. Such antibodies can limit tumor progression by different mechanisms, including direct growth inhibition and immune-mediated mechanisms, in particular complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC). ADCC can be mediated by various types of immune cells, including neutrophils, the most abundant leukocyte in circulation. Neutrophils express a number of Fc receptors, including Fcγ- and Fcα-receptors, and can therefore kill tumor cells opsonized with either IgG or IgA antibodies. In recent years, important insights have been obtained with respect to the mechanism(s) by which neutrophils engage and kill antibody-opsonized cancer cells and these findings are reviewed here. In addition, we consider a number of additional ways in which neutrophils may affect cancer progression, in particular by regulating adaptive anti-cancer immunity.
Asunto(s)
Neoplasias , Neutrófilos , Humanos , Citotoxicidad Celular Dependiente de Anticuerpos , Receptores Fc , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacología , Receptores de IgG/metabolismoRESUMEN
Antibody-based immunotherapy is a promising strategy in cancer treatment. Antibodies can directly inhibit tumor growth, induce complement-dependent cytotoxicity and induce Fc receptor-mediated elimination of tumor cells by macrophages and natural killer cells. Until now, however, neutrophils have been largely overlooked as potential effector cells, even though they are the most abundant type of immune cells in the circulation. Neutrophils display heterogeneity, especially in the context of cancer. Therefore, their role in cancer is debated. Nevertheless, neutrophils possess natural anti-tumor properties and appropriate stimulation, i.e. specific targeting via antibody therapy, induces potent tumor cell killing, especially via targeting of the immunoglobulin A Fc receptor (FcαRI, CD89). In this review we address the mechanisms of tumor cell killing by neutrophils and the role of neutrophils in induction of anti-tumor immunity. Moreover, possibilities for therapeutic targeting are discussed.
Asunto(s)
Neoplasias , Neutrófilos , Citotoxicidad Celular Dependiente de Anticuerpos , Humanos , Inmunoglobulina A , Inmunoterapia , Receptores Fc/fisiologíaRESUMEN
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, largely due to the development of colorectal liver metastases (CRLM). For the establishment of CRLM, CRC cells must remodel their tumor-microenvironment (TME), avoid the immune system, invade the underlying stroma, survive the hostile environment of the circulation, extravasate into the liver, reprogram the hepatic microenvironment into a permissive pre-metastatic niche, and finally, awake from a dormant state to grow out into clinically detectable CRLM. These steps form part of the invasion-metastasis cascade that relies on reciprocal interactions between the tumor and its ever-changing microenvironment. Such interplay provides a strong rational for therapeutically targeting the TME. In fact, several TME constituents, such as VEGF, TGF-ß coreceptor endoglin, and CXCR4, are already targeted in clinical trials. It is, however, of utmost importance to fully understand the complex interactions in the invasion-metastasis cascade to identify novel potential therapeutic targets and prevent the establishment of CRLM, which may ultimately greatly improve patient outcome.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/patología , Microambiente Tumoral , Factor de Crecimiento Transformador beta , Transducción de SeñalRESUMEN
Monoclonal antibody (mAb) therapy has successfully been introduced as treatment of several lymphomas and leukemias. However, solid tumors reduce the efficacy of mAb therapy because of an immune-suppressive tumor micro-environment (TME), which hampers activation of effector immune cells. Pro-inflammatory cytokine therapy may counteract immune suppression in the TME and increase mAb efficacy, but untargeted pro-inflammatory cytokine therapy is limited by severe off-target toxicity and a short half-life of cytokines. Antibody-cytokine fusion proteins, also referred to as immunocytokines, provide a solution to either issue, as the antibody both acts as local delivery platform and increases half-life. The antibody can furthermore bridge local cytotoxic immune cells, like macrophages and natural killer cells with tumor cells, which can be eliminated after effector cells are activated via the cytokine. Currently, a variety of different antibody formats as well as a handful of cytokine payloads are used to generate immunocytokines. However, many potential formats and payloads are still left unexplored. In this review, we describe current antibody formats and cytokine moieties that are used for the development of immunocytokines, and highlight several immunocytokines in (pre-)clinical studies. Furthermore, potential future routes of development are proposed.
Asunto(s)
Inmunoterapia , Neoplasias , Anticuerpos Monoclonales/uso terapéutico , Citocinas , Humanos , Células Asesinas Naturales , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes de Fusión , Microambiente TumoralRESUMEN
Circulating tumor cells (CTCs) have been detected in many patients with different solid malignancies. It has been reported that presence of CTCs correlates with worse survival in patients with multiple types of cancer. Several techniques have been developed to detect CTCs in liquid biopsies. Currently, the only method for CTC detection that is approved by the Food and Drug Administration is CellSearch. Due to low abundance of CTCs in certain cancer types and in early stages of disease, its clinical application is currently limited to metastatic colorectal cancer, breast cancer and prostate cancer. Therefore, we aimed to develop a new method for the detection of CTCs using the Attune NxT-a flow cytometry-based application that was specifically developed to detect rare events in biological samples without the need for enrichment. When healthy donor blood samples were spiked with variable amounts of different EpCAM+EGFR+ tumor cell lines, recovery yield was on average 75%. The detection range was between 1000 and 10 cells per sample. Cell morphology was confirmed with the Attune CytPix. Analysis of blood samples from metastatic colorectal cancer patients, as well as lung cancer patients, demonstrated that increased EpCAM+EGFR+ events were detected in more than half of the patient samples. However, most of these cells showed no (tumor) cell-like morphology. Notably, CellSearch analysis of blood samples from a subset of colorectal cancer patients did not detect CTCs either, suggesting that these blood samples were negative for CTCs. Therefore, we anticipate that the Attune NxT is not superior to CellSearch in detection of low amounts of CTCs, although handling and analysis of samples is easier. Moreover, morphological confirmation is essential to distinguish between CTCs and false positive events.
Asunto(s)
Neoplasias de la Mama , Neoplasias del Colon , Células Neoplásicas Circulantes , Neoplasias del Recto , Masculino , Humanos , Células Neoplásicas Circulantes/patología , Molécula de Adhesión Celular Epitelial , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Receptores ErbBRESUMEN
Patients with inflammatory bowel disease (IBD) produce enhanced immunoglobulin A (IgA) against the microbiota compared to healthy individuals, which has been correlated with disease severity. Since IgA complexes can potently activate myeloid cells via the IgA receptor FcαRI (CD89), excessive IgA production may contribute to IBD pathology. However, the cellular mechanisms that contribute to dysregulated IgA production in IBD are poorly understood. Here, we demonstrate that intestinal FcαRI-expressing myeloid cells (i.e., monocytes and neutrophils) are in close contact with B lymphocytes in the lamina propria of IBD patients. Furthermore, stimulation of FcαRI-on monocytes triggered production of cytokines and chemokines that regulate B-cell differentiation and migration, including interleukin-6 (IL6), interleukin-10 (IL10), tumour necrosis factor-α (TNFα), a proliferation-inducing ligand (APRIL), and chemokine ligand-20 (CCL20). In vitro, these cytokines promoted IgA isotype switching in human B cells. Moreover, when naïve B lymphocytes were cultured in vitro in the presence of FcαRI-stimulated monocytes, enhanced IgA isotype switching was observed compared to B cells that were cultured with non-stimulated monocytes. Taken together, FcαRI-activated monocytes produced a cocktail of cytokines, as well as chemokines, that stimulated IgA switching in B cells, and close contact between B cells and myeloid cells was observed in the colons of IBD patients. As such, we hypothesize that, in IBD, IgA complexes activate myeloid cells, which in turn can result in excessive IgA production, likely contributing to disease pathology. Interrupting this loop may, therefore, represent a novel therapeutic strategy.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Interleucina-10 , Linfocitos B , Citocinas , Humanos , Inmunoglobulina A , Cambio de Clase de Inmunoglobulina , Isotipos de Inmunoglobulinas , Interleucina-6 , Ligandos , Monocitos , Factor de Necrosis Tumoral alfaRESUMEN
Innate lymphoid cells (ILCs) guard epithelial tissue integrity during homeostasis, but can be potent immune effector cells during inflammation. Precursors to all ILC subsets (ILC precursors [ILCP]) have been identified in human peripheral blood (PB). We found that during homeostasis, ILCP in PB of mouse and human expressed homing receptors for secondary lymphoid organs, mainly CD62L. These ILCP entered mouse lymph nodes in a CD62L-dependent way and relied on S1P receptors for their exit. Importantly, CD62L expression was absent on human ILCs expressing NKp44 in tonsils and PB of Crohn disease patients, and relatively fewer CD62L+ ILCP were present in PB of Crohn disease patients. These data are in agreement with selective expression of CD62L on nonactivated ILCP. As such, we conclude that CD62L not only serves as a functional marker of ILCP, but has potential to be used in the clinic as a diagnostic marker in inflammatory disorders.
Asunto(s)
Células Sanguíneas/inmunología , Enfermedad de Crohn/inmunología , Selectina L/metabolismo , Ganglios Linfáticos/inmunología , Linfocitos/inmunología , Células Progenitoras Linfoides/fisiología , Animales , Células Cultivadas , Femenino , Homeostasis , Humanos , Inmunidad Innata , Selectina L/genética , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor 2 Gatillante de la Citotoxidad Natural/metabolismo , Receptores de Lisoesfingolípidos/metabolismoRESUMEN
The immunosuppressive character of head and neck cancers may explain the relatively low response rates to antibody therapy targeting a tumor antigen, such as cetuximab, and anti-PD-1 checkpoint inhibition. Immunostimulatory agents that overcome tumor-derived inhibitory signals could augment therapeutic efficacy, thereby enhancing tumor elimination and improving patient survival. Here, we demonstrate that cetuximab treatment combined with immunostimulatory agonists for Toll-like receptor (TLR) 2 induces profound immune responses. Natural killer (NK) cells, isolated from healthy individuals or patients with head and neck cancer, harbored enhanced cytotoxic capacity and increased tumor-killing potential in vitro. Additionally, combination treatment increased the release of several pro-inflammatory cytokines and chemokines by NK cells. Tumor-bearing mice that received cetuximab and the TLR2 ligand Pam3CSK4 showed increased infiltration of immune cells into the tumors compared to mice that received cetuximab monotherapy, resulting in a significant delay in tumor growth or even complete tumor regression. Moreover, combination treatment resulted in improved overall survival in vivo. In conclusion, combining tumor-targeting antibody-based immunotherapy with TLR stimulation represents a promising treatment strategy to improve the clinical outcomes of cancer patients. This treatment could well be applied together with other therapeutic strategies such as anti-PD-(L)1 checkpoint inhibition to further overcome immunosuppression.
Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Neoplasias de Cabeza y Cuello/terapia , Células Asesinas Naturales/inmunología , Receptor Toll-Like 2/agonistas , Animales , Línea Celular Tumoral , Cetuximab/farmacología , Cetuximab/uso terapéutico , Citocinas/metabolismo , Quimioterapia Combinada , Femenino , Humanos , Inmunoterapia , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Lipopéptidos/farmacología , Lipopéptidos/uso terapéutico , Ratones , Ratones Desnudos , Receptores de IgG/agonistas , Receptores de IgG/metabolismo , Receptor Toll-Like 2/metabolismo , Trasplante HeterólogoRESUMEN
BACKGROUND: IgA nephropathy (IgAN) often follows infections and features IgA mesangial deposition. Polymeric IgA deposits in the mesangium seem to have varied pathogenic potential, but understanding their pathogenicity remains a challenge. Most mesangial IgA1 in human IgAN has a hypogalactosylated hinge region, but it is unclear whether this is required for IgA deposition. Another important question is the role of adaptive IgA responses and high-affinity mature IgA antibodies and whether low-affinity IgA produced by innate-like B cells might also yield mesangial deposits. METHODS: To explore the effects of specific qualitative variations in IgA and whether altered affinity maturation can influence IgA mesangial deposition and activate complement, we used several transgenic human IgA1-producing models with IgA deposition, including one lacking the DNA-editing enzyme activation-induced cytidine deaminase (AID), which is required in affinity maturation. Also, to explore the potential role of the IgA receptor CD89 in glomerular inflammation, we used a model that expresses CD89 in a pattern observed in humans. RESULTS: We found that human IgA induced glomerular damage independent of CD89. When comparing mice able to produce high-affinity IgA antibodies with mice lacking AID-enabled Ig affinity maturation, we found that IgA deposition and complement activation significantly increased and led to IgAN pathogenesis, although without significant proteinuria or hematuria. We also observed that hinge hypoglycosylation was not mandatory for IgA deposition. CONCLUSIONS: In a mouse model of IgAN, compared with high-affinity IgA, low-affinity innate-like IgA, formed in the absence of normal antigen-driven maturation, was more readily involved in IgA glomerular deposition with pathogenic effects.
Asunto(s)
Afinidad de Anticuerpos , Mesangio Glomerular/metabolismo , Glomerulonefritis por IGA/etiología , Inmunoglobulina A/metabolismo , Animales , Antígenos CD/fisiología , Activación de Complemento , Citidina Desaminasa/fisiología , Mesangio Glomerular/patología , Glomerulonefritis por IGA/inmunología , Glicosilación , Humanos , Inmunoglobulina A/toxicidad , Ratones , Receptores Fc/fisiologíaRESUMEN
Type I and type III interferons (IFNs) are fundamental for antiviral immunity, but prolonged expression is also detrimental to the host. Therefore, upon viral infection high levels of type I and III IFNs are followed by a strong and rapid decline. However, the mechanisms responsible for this suppression are still largely unknown. Here, we show that IgG opsonization of model viruses influenza and respiratory syncytial virus (RSV) strongly and selectively suppressed type I and III IFN production by various human antigen-presenting cells. This suppression was induced by selective inhibition of TLR, RIG-I-like receptor, and STING-dependent type I and III IFN gene transcription. Surprisingly, type I and III IFN suppression was mediated by Syk and PI3K independent inhibitory signaling via FcγRIIa, thereby identifying a novel non-canonical FcγRIIa pathway in myeloid cells. Together, these results indicate that IgG opsonization of viruses functions as a novel negative feedback mechanism in humans, which may play a role in the selective suppression of type I and III IFN responses during the late-phase of viral infections. In addition, activation of this pathway may be used as a tool to limit type I IFN-associated pathology.
Asunto(s)
Interferón Tipo I/inmunología , Interferones/inmunología , Células Mieloides/inmunología , Receptores de IgG/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Cultivadas , Femenino , Humanos , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos C57BL , Virus Sincitiales Respiratorios/inmunología , Transducción de Señal/inmunología , Quinasa Syk/inmunología , Transcripción Genética/inmunología , Virosis/inmunología , Interferón lambdaRESUMEN
Immunoglobulin A (IgA) is the most prevalent antibody at mucosal sites, and has an important role in defense by preventing invasion of pathogens. Traditionally, IgA has been thought of as a non-inflammatory antibody that helps to maintain homeostasis in the mucosa. However, in the last decade it has become clear that IgA is a very potent stimulus to initiate pro-inflammatory cellular processes, especially after triggering the IgA Fc receptor (FcαRI) on neutrophils. It was furthermore described that FcαRI acts as a regulator between anti- and pro-inflammatory responses of IgA. Although neutrophil activation is beneficial in (mucosal) infections, abnormal or excessive IgA immune complexes can induce disproportionate neutrophil migration and in this way initiate a perpetuating neutrophil recruitment and activation loop, which will result in severe tissue damage. Increasing evidence on this process plays a detrimental role in several diseases, including autoimmune IgA blistering diseases, a subtype of rheumatoid arthritis and ulcerative colitis. Inhibiting FcαRI-mediated activation may dampen inflammation in these patients. This process also opens up the possibility of targeting FcαRI in antibody immunotherapy of cancer. Thus, interfering with IgA-mediated FcαRI activation may represent an attractive novel therapeutic strategy for multiple maladies.
Asunto(s)
Antígenos CD/metabolismo , Inmunoglobulina A/metabolismo , Receptores Fc/metabolismo , Animales , Antígenos CD/química , Antígenos CD/genética , Regulación de la Expresión Génica , Humanos , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/metabolismo , Enfermedades del Sistema Inmune/terapia , Inmunidad Mucosa , Inmunoglobulina A/química , Inmunoglobulina A/inmunología , Inmunoterapia , Ligandos , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Membrana Mucosa/microbiología , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/terapia , Especificidad de Órganos/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Fc/química , Receptores Fc/genética , Transducción de SeñalRESUMEN
The individual role of pathogen-binding Toll-like receptors (TLRs) and antibody-binding Fc receptors (FcRs) during pathogenic infections has been studied extensively. However, combined activation of these different receptor classes has received little attention, even though they are triggered simultaneously when immune cells bind antibody-opsonized pathogens. In the last few years, it has become evident that joined activation of TLRs and FcRs substantially tailors inflammatory immune responses, which is an efficient and controlled mechanism of the host to act upon invading pathogens. In this review, we discuss the mechanisms of cross-talk between different TLRs and FcRs and the resulting inflammatory immune responses. Furthermore, we propose how chronic activation via this cross-talk might be detrimental in inflammatory (auto) immune diseases. We conclude with the potential exploitation of the interplay between TLRs and FcRs for monoclonal antibody therapy to target tumors. Future interests in this field of research include establishing a more detailed and mechanistic understanding of the mode of action of TLR and FcR cross-talk and exploration of its physiological importance in health and disease. This may furthermore open up novel therapeutic options for intervention in inflammatory diseases or cancer.
Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad , Inmunoglobulinas/inmunología , Inmunoglobulinas/metabolismo , Receptores Fc/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Infecciones/inmunología , Infecciones/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/terapia , Unión Proteica , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/antagonistas & inhibidoresRESUMEN
Binding of monoclonal antibodies (mAbs) onto a cell surface triggers antibody-mediated effector killing by innate immune cells through complement activation. As an alternative to mAbs, synthetic systems that can recruit endogenous antibodies from the blood stream to a cancer cell surface could be of great relevance. Herein, we explore antibody-recruiting polymers (ARPs) as a novel class of immunotherapy. ARPs consist of a cell-binding motif linked to a polymer that contains multiple small molecule antibody-binding motifs along its backbone. As a proof of concept, we employ a lipid anchor that inserts into the phospholipid cell membrane and make use of a polymeric activated ester scaffold onto which we substitute dinitrophenol as an antibody-binding motif. We demonstrate that ARPs allow for high avidity antibody binding and drive antibody recruitment to treated cells for several days. Furthermore, we show that ARP-treated cancer cells are prone to antibody-mediated killing through phagocytosis by macrophages.
Asunto(s)
Anticuerpos/inmunología , Inmunidad Innata , Inmunoterapia , Neoplasias/terapia , Polímeros/farmacología , Línea Celular Tumoral , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunoterapia/métodos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Neoplasias/inmunología , Fagocitosis/efectos de los fármacos , Polímeros/químicaRESUMEN
The cross-linking of the IgA Fc receptor (FcαRI) by IgA induces release of the chemoattractant LTB4, thereby recruiting neutrophils in a positive feedback loop. IgA autoantibodies of patients with autoimmune blistering skin diseases therefore induce massive recruitment of neutrophils, resulting in severe tissue damage. To interfere with neutrophil mobilization and reduce disease morbidity, we developed a panel of specific peptides mimicking either IgA or FcαRI sequences. CLIPS technology was used to stabilize three-dimensional structures and to increase peptides' half-life. IgA and FcαRI peptides reduced phagocytosis of IgA-coated beads, as well as IgA-induced ROS production and neutrophil migration in in vitro and ex vivo (human skin) experiments. Since topical application would be the preferential route of administration, Cetomacrogol cream containing an IgA CLIPS peptide was developed. In the presence of a skin permeation enhancer, peptides in this cream were shown to penetrate the skin, while not diffusing systemically. Finally, epitope mapping was used to discover sequences important for binding between IgA and FcαRI. In conclusion, a cream containing IgA or FcαRI peptide mimetics, which block IgA-induced neutrophil activation and migration in the skin may have therapeutic potential for patients with IgA-mediated blistering skin diseases.
Asunto(s)
Antígenos CD/química , Autoanticuerpos/química , Inmunoglobulina A/química , Activación Neutrófila/efectos de los fármacos , Peptidomiméticos/inmunología , Peptidomiméticos/metabolismo , Receptores Fc/química , Administración Tópica , Antígenos CD/inmunología , Antígenos CD/metabolismo , Autoanticuerpos/inmunología , Autoanticuerpos/metabolismo , Enfermedades Autoinmunes/terapia , Cetomacrogol/administración & dosificación , Cetomacrogol/química , Mapeo Epitopo , Semivida , Humanos , Enfermedades del Sistema Inmune/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina A/metabolismo , Trastornos Leucocíticos/inmunología , Leucotrieno B4/metabolismo , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Biblioteca de Péptidos , Peptidomiméticos/química , Fagocitosis , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Receptores Fc/inmunología , Receptores Fc/metabolismo , Piel/efectos de los fármacos , Piel/inmunología , Piel/patología , Absorción Cutánea , Enfermedades de la Piel/inmunología , Enfermedades de la Piel/terapiaRESUMEN
Neutrophils represent the most abundant population of circulating cytotoxic effector cells. Moreover, their number can be easily increased by treatment with granulocyte-colony stimulating factor or granulocyte macrophage-colony stimulating factor, without the need for ex vivo expansion. Because neutrophils express Fc receptors, they have the potential to act as effector cells during monoclonal antibody therapy of cancer. Additionally, as neutrophils play a role in the regulation of adaptive immune responses, exploiting neutrophils in mAb therapy may result in long-term antitumour immunity. There is limited evidence that neutrophils play a prominent role in current immunoglobulin G-based immunotherapy. However, as IgA induces neutrophil recruitment, novel therapeutic strategies that aim to target the IgA Fc receptor FcαRI may fully unleash the potential of enlisting neutrophils as cytotoxic effector cells in antibody therapy of cancer.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/fisiología , Neoplasias/inmunología , Neutrófilos/fisiología , Inmunidad Adaptativa/fisiología , Predicción , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Células Tumorales CultivadasRESUMEN
Autoantibodies, including rheumatoid factor (RF), are an important characteristic of rheumatoid arthritis (RA). Interestingly, several studies reported a correlation between the presence of IgA autoantibodies and worse disease course. We demonstrated previously that triggering the IgA Fc receptor (FcαRI) on neutrophils results in neutrophil recruitment and the release of neutrophil extracellular traps (NETs). Because this can lead to tissue damage, we investigated whether IgA immune complexes in plasma and synovial fluid of RA patients activate neutrophils. RF isotypes were measured with ELISA, and immune complexes were precipitated using polyethylene glycol 6000. Isolated neutrophils were incubated with immune complexes, and activation and release of NETs were determined in the presence or absence of FcαRI-blocking Abs. Plasma and SF of RA patients contained IgM, IgG, and IgA RFs. Patient plasma IgA RF and IgM RF showed a strong correlation. No uptake of IgM and minimal endocytosis of IgG immune complexes by neutrophils was observed, in contrast to avid uptake of IgA complexes. Incubation of neutrophils with immune complexes resulted in the production of reactive oxygen species, as well as the release of NETs, lactoferrin, and chemotactic stimuli. Importantly, activation of neutrophils was reduced when FcαRI was blocked. Neutrophils were activated by IgA immune complexes, which suggests that neutrophils play a role in inducing joint damage in RA patients who have IgA autoantibody complexes, thereby increasing the severity of disease. Blocking FcαRI inhibited neutrophil activation and, as such, may represent an additional attractive novel therapeutic strategy for the treatment of RA.
Asunto(s)
Antígenos CD/metabolismo , Artritis Reumatoide/inmunología , Trampas Extracelulares/metabolismo , Activación Neutrófila , Neutrófilos/inmunología , Receptores Fc/metabolismo , Anciano , Anticuerpos Bloqueadores/farmacología , Complejo Antígeno-Anticuerpo/metabolismo , Proteínas Sanguíneas/metabolismo , Células Cultivadas , Femenino , Humanos , Inmunoglobulina A/metabolismo , Masculino , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Factor Reumatoide/sangre , Líquido Sinovial/metabolismoRESUMEN
BACKGROUND: Neutrophils participate in the first line of defense by executing several killing mechanisms, including phagocytosis, degranulation and the release of neutrophil extracellular traps. Additionally, they can orchestrate the adaptive immune system by secreting cytokines and chemokines. Opsonization with antibodies aids in the recognition of pathogens, via binding to Fc receptors on the neutrophil surface. Immunoglobulin A (IgA) is the most abundant antibody at mucosal sites and has multiple functions in homeostasis and immunity. Neutrophils and IgA can interact via the IgA Fc receptor Fc?RI (CD89), leading to pro- or anti-inflammatory responses. AIMS: The aim of this review is to give a concise overview of the interplay between IgA, Fc?RI and neutrophils and to explore potential therapies for autoimmune diseases and cancer. RESULTS: Crosslinking of FcαRI by IgA-immune complexes yields potent neutrophil activation and pro-inflammatory effector functions, including the recruitment of neutrophils. This can lead to neutrophil accumulation and tissue destruction during IgA-autoantibody mediated diseases. Conversely, for cancer treatment, the myriad of powerful neutrophil effector functions after targeting FcαRI may contribute to effective immunotherapy. CONCLUSION: By interfering with or actively promoting the interaction between IgA and FcαRI, therapies for multiple maladies could be developed.
Asunto(s)
Antígenos CD/fisiología , Inmunoglobulina A/fisiología , Neutrófilos/inmunología , Receptores Fc/fisiología , Anticuerpos Monoclonales/uso terapéutico , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Predicción , Humanos , Inmunidad Celular/inmunología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Activación Neutrófila/inmunología , Receptores Fc/inmunologíaRESUMEN
During secondary immune responses, Ab-opsonized bacteria are efficiently taken up via FcRs by dendritic cells. We now demonstrate that this process induces cross-talk between FcRs and TLRs, which results in synergistic release of several inflammatory cytokines, as well as altered lipid metabolite profiles. This altered inflammatory profile redirects Th1 polarization toward Th17 cell responses. Interestingly, GM-CSF-producing Th cells were synergistically evoked as well, which suggests the onset of polyfunctional Th17 cells. Synergistic cytokine release was dependent on activation via MyD88 and ITAM signaling pathways through TLRs and FcRs, respectively. Cytokine regulation occurred via transcription-dependent mechanisms for TNF-α and IL-23 and posttranscriptional mechanisms for caspase-1-dependent release of IL-1ß. Furthermore, cross-talk between TLRs and FcRs was not restricted to dendritic cells. In conclusion, our results support that bacteria alone initiate fundamentally different immune responses compared with Ab-opsonized bacteria through the combined action of two classes of receptors and, ultimately, may refine new therapies for inflammatory diseases.
Asunto(s)
Células Dendríticas/inmunología , Receptor Cross-Talk/inmunología , Receptores Fc/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Receptores Toll-Like/inmunología , Anticuerpos Antibacterianos/inmunología , Western Blotting , Diferenciación Celular/inmunología , Separación Celular , Infecciones por Enterobacteriaceae/inmunología , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/inmunología , Citometría de Flujo , Humanos , Memoria Inmunológica/inmunología , Inflamación/inmunología , Activación de Linfocitos/inmunología , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/inmunologíaRESUMEN
The lack of immune cells in mid-gestational fetal skin is often mentioned as a key factor underlying scarless healing. However, the scarless healing ability is conserved until long after the immune system in the fetus is fully developed. Therefore, we studied human second-trimester fetal skin and compared the numbers of immune cells and chemokine levels from fetal skin with adult skin. By using immunohistochemistry, we show that healthy fetal skin contains significant lower numbers of CD68(+) -macrophages, Tryptase(+) -mast cells, Langerin(+) -Langerhans cells, CD1a(+) -dendritic cells, and CD3(+) -T cells compared to adult skin. Staining with an early lineage leukocyte marker, i.e., CD45, verified that the number of CD45(+) -immune cells was indeed significantly lower in fetal skin but that sufficient numbers of immune cells were present in the fetal lymph node. No differences in the vascular network were observed between fetal and adult skin. Moreover, significant lower levels of lymphocyte chemokines CCL17, CCL21, and CCL27 were observed in fetal skin. However, levels of inflammatory interleukins such as IL-6, IL-8, and IL-10 were undetectable and levels of CCL2 were similar in healthy fetal and adult skin. In conclusion, this study shows that second-trimester fetal skin contains low levels of immune cells and leukocyte chemokines compared to adult skin. This immune cell deficiency includes CD45(+) leukocytes, despite the abundant presence of these cells in the lymph node. The immune deficiency in healthy second-trimester fetal skin may result in reduced inflammation during wound healing, and could underlie the scarless healing capacities of the fetal skin.