RESUMEN
Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.
Asunto(s)
Epilepsia , Mutación Missense , Trastornos del Neurodesarrollo , Canales de Potasio Shab , Animales , Humanos , Potenciales de Acción , Epilepsia/genética , Neuronas , Oocitos , Xenopus laevis , Canales de Potasio Shab/genética , Canales de Potasio Shab/metabolismo , Trastornos del Neurodesarrollo/genéticaRESUMEN
Wolman's disease, a severe form of lysosomal acid lipase deficiency, leads to pathologic lipid accumulation in the liver and gut that, without treatment, is fatal in infancy. Although continued enzyme-replacement therapy (ERT) in combination with dietary fat restriction prolongs life, its therapeutic effect may wane over time. Allogeneic hematopoietic stem-cell transplantation (HSCT) offers a more definitive solution but carries a high risk of death. Here we describe an infant with Wolman's disease who received high-dose ERT, together with dietary fat restriction and rituximab-based B-cell depletion, as a bridge to early HSCT. At 32 months, the infant was independent of ERT and disease-free, with 100% donor chimerism in the peripheral blood.
Asunto(s)
Grasas de la Dieta , Terapia de Reemplazo Enzimático , Trasplante de Células Madre Hematopoyéticas , Factores Inmunológicos , Rituximab , Enfermedad de Wolman , Humanos , Lactante , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Quimerismo , Grasas de la Dieta/efectos adversos , Terapia de Reemplazo Enzimático/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Factores Inmunológicos/uso terapéutico , Rituximab/uso terapéutico , Trasplante Homólogo , Enfermedad de Wolman/dietoterapia , Enfermedad de Wolman/tratamiento farmacológico , Enfermedad de Wolman/inmunología , Enfermedad de Wolman/terapiaRESUMEN
Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes. To delineate how cellular consequences of NAE1 deficiency would lead to the clinical phenotype, we focused primarily on the rarest phenotypic features, based on the assumption that these would best reflect the pathophysiology at stake. Two of the rarest features, neuronal loss and lymphopenia worsening during infections, suggest that NAE1 is required during cellular stress caused by infections to protect against cell death. In support, we found that stressing the proteasome system with MG132-requiring upregulation of neddylation to restore proteasomal function and proteasomal stress-led to increased cell death in fibroblasts of individuals with NAE1 genetic variants. Additionally, we found decreased lymphocyte counts after CD3/CD28 stimulation and decreased NF-κB translocation in individuals with NAE1 variants. The rarest phenotypic feature-delayed closure of the ischiopubic rami-correlated with significant downregulation of RUN2X and SOX9 expression in transcriptomic data of fibroblasts. Both genes are involved in the pathophysiology of ischiopubic hypoplasia. Thus, we show that NAE1 plays a major role in (skeletal) development and cellular homeostasis during stress. Our approach suggests that a focus on rare phenotypic features is able to provide significant pathophysiological insights in diseases caused by mutations in genes with pleiotropic effects.
Asunto(s)
Discapacidad Intelectual , Linfopenia , Humanos , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Transducción de Señal/genética , Discapacidad Intelectual/genética , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Linfopenia/genéticaRESUMEN
Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder characterized by arylsulfatase A (ASA) deficiency, leading to sulfatide accumulation and myelin degeneration in the central nervous system. While primarily considered a white matter (WM) disease, gray matter (GM) is also affected in MLD, and hematopoietic stem cell transplantation (HSCT) may have limited effect on GM atrophy. We cross-sectionally and longitudinally studied GM volumes using volumetric MRI in a cohort of 36 (late-infantile, juvenile and adult type) MLD patients containing untreated and HSCT treated subjects. Cerebrum, cortical GM, (total) CSF, cerebellum, deep gray matter (DGM) (excluding thalamus) and thalamus volumes were analyzed. Longitudinal correlations with measures of cognitive and motor functioning were assessed. Cross-sectionally, juvenile and adult type patients (infantiles excluded based on limited numbers) were compared with controls at earliest scan, before possible treatment. Patients had lower cerebrum, cortical GM, DGM and thalamus volumes. Differences were most pronounced for adult type patients. Longitudinal analyses showed substantial and progressive atrophy of all regions and increase of CSF in untreated patients. Similar, albeit less pronounced, effects were seen in treated patients for cerebrum, cortical GM, CSF and thalamus volumes. Deterioration in motor performance (all patients) was related to atrophy, and increase of CSF, in all regions. Cognitive functioning (data available for treated patients) was related to cerebral, cortical GM and thalamus atrophy; and to CSF increase. Our findings illustrate the importance of recognizing GM pathology as a potentially substantial, clinically relevant part of MLD, apparently less amenable to treatment.
Asunto(s)
Atrofia , Sustancia Gris , Leucodistrofia Metacromática , Imagen por Resonancia Magnética , Humanos , Leucodistrofia Metacromática/patología , Leucodistrofia Metacromática/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Atrofia/patología , Masculino , Femenino , Adulto , Estudios Longitudinales , Adolescente , Adulto Joven , Niño , Estudios Transversales , Preescolar , Persona de Mediana Edad , Trasplante de Células Madre Hematopoyéticas , Lactante , Tálamo/patología , Tálamo/diagnóstico por imagen , CogniciónRESUMEN
Metachromatic leukodystrophy is a lethal metabolic leukodystrophy, with emerging treatments for early disease stages. Biomarkers to measure disease activity are required for clinical assessment and treatment follow-up. This retrospective study compared neurofilament light chain and glial fibrillary acidic protein (GFAP) levels in CSF (n = 11) and blood (n = 92) samples of 40 patients with metachromatic leukodystrophy (aged 0-42 years) with 38 neurologically healthy children (aged 0-17 years) and 38 healthy adults (aged 18-45 years), and analysed the associations between these levels with clinical phenotype and disease evolution in untreated and transplanted patients. Metachromatic leukodystrophy subtype was determined based on the (expected) age of symptom onset. Disease activity was assessed by measuring gross motor function deterioration and brain MRI. Longitudinal analyses with measurements up to 23 years after diagnosis were performed using linear mixed models. CSF and blood neurofilament light chain and GFAP levels in paediatric controls were negatively associated with age (all P < 0.001). Blood neurofilament light chain level at diagnosis (median, interquartile range; picograms per millilitre) was significantly increased in both presymptomatic (14.7, 10.6-56.7) and symptomatic patients (136, 40.8-445) compared to controls (5.6, 4.5-7.1), and highest among patients with late-infantile (456, 201-854) or early-juvenile metachromatic leukodystrophy (291.0, 104-445) and those ineligible for treatment based on best practice (291, 57.4-472). GFAP level (median, interquartile range; picogram per millilitre) was only increased in symptomatic patients (591, 224-1150) compared to controls (119, 78.2-338) and not significantly associated with treatment eligibility (P = 0.093). Higher blood neurofilament light chain and GFAP levels at diagnosis were associated with rapid disease progression in late-infantile (P = 0.006 and P = 0.051, respectively) and early-juvenile patients (P = 0.048 and P = 0.039, respectively). Finally, blood neurofilament light chain and GFAP levels decreased during follow-up in untreated and transplanted patients but remained elevated compared with controls. Only neurofilament light chain levels were associated with MRI deterioration (P < 0.001). This study indicates that both proteins may be considered as non-invasive biomarkers for clinical phenotype and disease stage at clinical assessment, and that neurofilament light chain might enable neurologists to make better informed treatment decisions. In addition, neurofilament light chain holds promise assessing treatment response. Importantly, both biomarkers require paediatric reference values, given that their levels first decrease before increasing with advancing age.
Asunto(s)
Leucodistrofia Metacromática , Biomarcadores , Niño , Proteína Ácida Fibrilar de la Glía , Humanos , Filamentos Intermedios , Leucodistrofia Metacromática/diagnóstico por imagen , Leucodistrofia Metacromática/terapia , Imagen por Resonancia Magnética , Proteínas de Neurofilamentos , Estudios RetrospectivosRESUMEN
SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.
Asunto(s)
Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Mutación , Factores de Transcripción/genética , Anomalías Múltiples/genética , Adolescente , Niño , Preescolar , Proteínas de Unión al ADN , Cara/anomalías , Femenino , Deformidades Congénitas de la Mano/genética , Humanos , Masculino , Micrognatismo/genética , Cuello/anomalías , Proteína Reelina , SíndromeRESUMEN
The RNA polymerase II complex (pol II) is responsible for transcription of all â¼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Hipotonía Muscular/patología , Mutación , Trastornos del Neurodesarrollo/patología , Saccharomyces cerevisiae/crecimiento & desarrollo , Adolescente , Edad de Inicio , Niño , Preescolar , Femenino , Células HeLa , Heterocigoto , Humanos , Masculino , Hipotonía Muscular/enzimología , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMEN
Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient-own liver-derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient-derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient-derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched-chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient-specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Organoides , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Humanos , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Redes y Vías Metabólicas , Organoides/metabolismoRESUMEN
Tyrosinemia type 1 (TT1) and phenylketonuria (PKU) are both inborn errors of phenylalanine-tyrosine metabolism. Neurocognitive and behavioral outcomes have always featured in PKU research but received less attention in TT1 research. This study aimed to investigate and compare neurocognitive, behavioral, and social outcomes of treated TT1 and PKU patients. We included 33 TT1 patients (mean age 11.24 years; 16 male), 31 PKU patients (mean age 10.84; 14 male), and 58 age- and gender-matched healthy controls (mean age 10.82 years; 29 male). IQ (Wechsler-subtests), executive functioning (the Behavioral Rating Inventory of Executive Functioning), mental health (the Achenbach-scales), and social functioning (the Social Skills Rating System) were assessed. Results of TT1 patients, PKU patients, and healthy controls were compared using Kruskal-Wallis tests with post-hoc Mann-Whitney U tests. TT1 patients showed a lower IQ and poorer executive functioning, mental health, and social functioning compared to healthy controls and PKU patients. PKU patients did not differ from healthy controls regarding these outcome measures. Relatively poor outcomes for TT1 patients were particularly evident for verbal IQ, BRIEF dimensions "working memory", "plan and organize" and "monitor", ASEBA dimensions "social problems" and "attention problems", and for the SSRS "assertiveness" scale (all p values <0.001). To conclude, TT1 patients showed cognitive impairments on all domains studied, and appeared to be significantly more affected than PKU patients. More attention should be paid to investigating and monitoring neurocognitive outcome in TT1 and research should focus on explaining the underlying pathophysiological mechanism.
Asunto(s)
Fenilcetonurias , Tirosinemias , Niño , Humanos , Masculino , Salud Mental , Redes y Vías Metabólicas , Pruebas Neuropsicológicas , Tirosinemias/genéticaRESUMEN
Loss-of-function mutations in glutaminase (GLS), the enzyme converting glutamine into glutamate, and the counteracting enzyme glutamine synthetase (GS) cause disturbed glutamate homeostasis and severe neonatal encephalopathy. We report a de novo Ser482Cys gain-of-function variant in GLS encoding GLS associated with profound developmental delay and infantile cataract. Functional analysis demonstrated that this variant causes hyperactivity and compensatory downregulation of GLS expression combined with upregulation of the counteracting enzyme GS, supporting pathogenicity. Ser482Cys-GLS likely improves the electrostatic environment of the GLS catalytic site, thereby intrinsically inducing hyperactivity. Alignment of +/-12.000 GLS protein sequences from >1000 genera revealed extreme conservation of Ser482 to the same degree as catalytic residues. Together with the hyperactivity, this indicates that Ser482 is evolutionarily preserved to achieve optimal-but submaximal-GLS activity. In line with GLS hyperactivity, increased glutamate and decreased glutamine concentrations were measured in urine and fibroblasts. In the brain (both grey and white matter), glutamate was also extremely high and glutamine was almost undetectable, demonstrated with magnetic resonance spectroscopic imaging at clinical field strength and subsequently supported at ultra-high field strength. Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the brain provide an explanation for the developmental delay. Cataract, a known consequence of oxidative stress, was evoked in zebrafish expressing the hypermorphic Ser482Cys-GLS and could be alleviated by inhibition of GLS. The capacity to detoxify reactive oxygen species was reduced upon Ser482Cys-GLS expression, providing an explanation for cataract formation. In conclusion, we describe an inborn error of glutamate metabolism caused by a GLS hyperactivity variant, illustrating the importance of balanced GLS activity.
Asunto(s)
Glutaminasa/genética , Glutaminasa/fisiología , Adolescente , Animales , Encéfalo/metabolismo , Catarata/genética , Preescolar , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Mutación con Ganancia de Función/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/fisiología , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Pez CebraRESUMEN
Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.
Asunto(s)
ADN Helicasas/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Dominio Catalítico , Niño , Preescolar , Estudios de Cohortes , Epilepsia/genética , Femenino , Genes Dominantes , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Trastornos del Neurodesarrollo/fisiopatología , Linaje , Adulto JovenRESUMEN
Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kucinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.
Asunto(s)
Artrogriposis/genética , Encéfalo/embriología , Mutación/genética , Proteínas/genética , Adolescente , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Linaje , Pez Cebra , Proteínas de Pez Cebra/genéticaRESUMEN
The CEP83 protein is an essential part in the first steps of ciliogenesis, causing a ciliopathy if deficient. As a core component of the distal appendages of the centriole, CEP83 is located in almost all cell types and is involved in the primary cilium assembly. Previously reported CEP83 deficient patients all presented with nephronophthisis and kidney dysfunction. Despite retinal degeneration being a common feature in ciliopathies, only one patient also had retinitis. Here, we present two unrelated patients, who both presented with retinitis pigmentosa, without nephronophthisis or any form of kidney dysfunction. Both patients harbor bi-allelic variants in CEP83. This report expands the current clinical spectrum of CEP83 deficiency. For timely diagnosis of CEP83 deficiency, we advocate that CEP83 should be included in gene panels for inherited retinal diseases.
Asunto(s)
Ciliopatías/genética , Proteínas Asociadas a Microtúbulos/genética , Retina/patología , Retinitis Pigmentosa/genética , Niño , Preescolar , Cilios , Ciliopatías/diagnóstico por imagen , Ciliopatías/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Riñón/diagnóstico por imagen , Enfermedades Renales/diagnóstico por imagen , Enfermedades Renales/genética , Enfermedades Renales/patología , Masculino , Proteínas Asociadas a Microtúbulos/deficiencia , Retina/diagnóstico por imagen , Retinitis Pigmentosa/diagnóstico por imagen , Retinitis Pigmentosa/patologíaRESUMEN
Corneal clouding, causing visual impairment, is seen in nearly all patients with mucopolysaccharidosis type 1 (MPS-1). Hematopoietic cell transplantation (HCT) is able to stabilize disease in many organs. Residual disease in several tissues is being increasingly recognized, however. Data on the effect of HCT on ocular disease in patients with MPS-1 are contradictory. With this study, we aim to clarify the long-term effects of HCT on ocular disease in these patients. Best corrected visual acuity (BCVA), refraction, intraocular pressure (IOP), and slit-lamp biomicroscopic and fundoscopic examinations, including corneal clouding, were collected prospectively from 24 patients with MPS-1 who underwent HCT successfully between 2003 and 2018 (92% with >95% chimerism and normal enzyme activity after HCT). The course of corneal clouding and BCVA after HCT were analyzed using a linear mixed model. Other parameters studied were clinical phenotype, age at time of transplantation, and hematologic enzyme activity after transplantation. Outcomes of additional ophthalmologic tests were described. In addition, IDUA and α-galactosidase A (AGAL) enzyme activity and glycosaminoglycan (GAG) concentration in tear fluid were determined. Corneal clouding stabilized in the first years after HCT but increased rapidly beyond 3 years (P < .0001). BCVA and IOP also worsened over time (P = .01 and P < .0001, respectively). IDUA activity in tear fluid remained very low (P < .0001). After initial stabilization in the cornea, ongoing ocular disease and low IDUA activity in tear fluid is seen in patients with MPS-1 despite treatment with HCT, unveiling a weak spot of current standard therapy. New therapies that overcome these shortcomings are needed to improve the late outcomes of patients.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mucopolisacaridosis I , Niño , Córnea , Humanos , Presión Intraocular , Mucopolisacaridosis I/terapia , FenotipoRESUMEN
MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized hypotonia, psychomotor delay, refractory epilepsy, and elevated lactate in the blood and cerebrospinal fluid. Functional studies in fibroblasts from affected subjects showed both an apparently complete loss of MDH2 levels and MDH2 enzymatic activity close to null. Metabolomics analyses demonstrated a significant concomitant accumulation of the MDH substrate, malate, and fumarate, its immediate precursor in the Krebs cycle, in affected subjects' fibroblasts. Lentiviral complementation with wild-type MDH2 cDNA restored MDH2 levels and mitochondrial MDH activity. Additionally, introduction of the three missense mutations from the affected subjects into Saccharomyces cerevisiae provided functional evidence to support their pathogenicity. Disruption of the Krebs cycle is a hallmark of cancer, and MDH2 has been recently identified as a novel pheochromocytoma and paraganglioma susceptibility gene. We show that loss-of-function mutations in MDH2 are also associated with severe neurological clinical presentations in children.
Asunto(s)
Encefalopatías/genética , Ciclo del Ácido Cítrico , Malato Deshidrogenasa/genética , Mutación , Edad de Inicio , Alelos , Secuencia de Aminoácidos , Niño , Preescolar , Ciclo del Ácido Cítrico/genética , Fibroblastos/enzimología , Fibroblastos/metabolismo , Fumaratos/metabolismo , Prueba de Complementación Genética , Humanos , Lactante , Recién Nacido , Malato Deshidrogenasa/química , Malato Deshidrogenasa/metabolismo , Malatos/metabolismo , Masculino , Metabolómica , Modelos MolecularesRESUMEN
NGLY1 encodes the enzyme N-glycanase that is involved in the degradation of glycoproteins as part of the endoplasmatic reticulum-associated degradation pathway. Variants in this gene have been described to cause a multisystem disease characterized by neuromotor impairment, neuropathy, intellectual disability, and dysmorphic features. Here, we describe four patients with pathogenic variants in NGLY1. As the clinical features and laboratory results of the patients suggested a multisystem mitochondrial disease, a muscle biopsy had been performed. Biochemical analysis in muscle showed a strongly reduced ATP production rate in all patients, while individual OXPHOS enzyme activities varied from normal to reduced. No causative variants in any mitochondrial disease genes were found using mtDNA analysis and whole exome sequencing. In all four patients, variants in NGLY1 were identified, including two unreported variants (c.849T>G (p.(Cys283Trp)) and c.1067A>G (p.(Glu356Gly)). Western blot analysis of N-glycanase in muscle and fibroblasts showed a complete absence of N-glycanase. One patient showed a decreased basal and maximal oxygen consumption rates in fibroblasts. Mitochondrial morphofunction fibroblast analysis showed patient specific differences when compared to control cell lines. In conclusion, variants in NGLY1 affect mitochondrial energy metabolism which in turn might contribute to the clinical disease course.
Asunto(s)
Epilepsias Mioclónicas/genética , Discapacidad Intelectual/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Polineuropatías/genética , Niño , Preescolar , Trastornos Congénitos de Glicosilación/diagnóstico por imagen , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Epilepsias Mioclónicas/diagnóstico por imagen , Epilepsias Mioclónicas/patología , Femenino , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/patología , Masculino , Mitocondrias/genética , Mitocondrias/patología , Mutación/genética , Polineuropatías/diagnóstico por imagen , Polineuropatías/patologíaRESUMEN
Glucose transporter type 1 deficiency syndrome (GLUT1DS) is characterised by deficient glucose transport over the blood-brain barrier and reduced glucose availability in the brain. This causes epilepsy, movement disorders, and cognitive impairment. Treatment with ketogenic diet provides ketones as alternative energy source. However, not all GLUT1DS patients are on dietary treatment (worldwide registry: 77/181 [43%] of patients). The current 25-year experience allows evaluation of effects and tolerability of dietary treatment for GLUT1DS. To this end, literature was searched up to January 2019 for individual case reports and series reporting (side) effects of dietary treatment for GLUT1DS. Upon aggregation of data for analysis, we identified 270 GLUT1DS patients with dietary treatment with a mean follow-up of 53 months. Epilepsy improved for 83% of 230 patients and remained unchanged for 17%, movement disorders improved for 82% of 127 patients and remained unchanged for 17%, and cognition improved for 59% of 58 patients and remained stable for 40%. Effects on epilepsy were seen within days/weeks and were most pronounced in patients with early treatment initiation. Effects on movement disorders were noticed within months and were strongest in patients with higher cerebrospinal fluid-to-blood glucose ratio. Although side effects were minimal, 18% of 270 patients reported poor compliance. In individual patients, symptoms deteriorated upon low ketosis, poor compliance, or treatment discontinuation. Based on the good tolerability and strong favourable effect of dietary treatment on GLUT1DS symptoms, we advocate dietary treatment in all GLUT1DS patients and prompt diagnosis or screening to allow early treatment.
Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/dietoterapia , Disfunción Cognitiva/dietoterapia , Dieta Cetogénica , Epilepsia/dietoterapia , Proteínas de Transporte de Monosacáridos/deficiencia , Trastornos del Movimiento/dietoterapia , Disfunción Cognitiva/etiología , Epilepsia/etiología , Humanos , Trastornos del Movimiento/etiologíaRESUMEN
In the rapidly growing group of rare genetic disorders, data scarcity demands an intelligible use of available data, in order to improve understanding of underlying pathophysiology. We hypothesize, based on the principle that clinical similarities may be indicative of shared pathophysiology, that determining phenotypic specificity could provide unsuspected insights in pathophysiology of rare genetic disorders. We explored our hypothesis by studying subunit deficiencies of the conserved oligomeric Golgi (COG) complex, a subgroup of congenital disorders of glycosylation (CDG). In this systematic data assessment, all 45 reported patients with COG-CDG were included. The vocabulary of the Human Phenotype Ontology was used to annotate all phenotypic features and to assess occurrence in other genetic disorders. Gene occurrence ratios were calculated by dividing the frequency in the patient cohort over the number of associated genes, according to the Human Phenotype Ontology. Prioritisation based on phenotypic specificity was highly informative and captured phenotypic features commonly associated with glycosylation disorders. Moreover, it captured features not seen in any other glycosylation disorder, among which episodic fever, likely reflecting underappreciated other cellular functions of the COG complex. Interestingly, the COG complex was recently implicated in the autophagy pathway, as are more than half of the genes underlying disorders that present with episodic fever. This suggests that whereas many phenotypic features in these patients are caused by disrupted glycosylation, episodic fever might be caused by disrupted autophagy. Thus, we here demonstrate support for our hypothesis that determining phenotypic specificity could facilitate understanding of pathophysiology in rare genetic disorders.
Asunto(s)
Trastornos Congénitos de Glicosilación/etiología , Complejos Multiproteicos/genética , Mutación , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Trastornos Congénitos de Glicosilación/genética , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Complejos Multiproteicos/química , FenotipoRESUMEN
Hearing loss is frequently seen in mucopolysaccharidoses (MPS) patients. Although hematopoietic cell transplantation (HCT) increases overall survival, disease progression is observed in certain tissues. This study describes the course of hearing loss (HL) over time in transplanted MPS patients. Transplanted MPS patients between 2003 and 2018 were included and received yearly audiological evaluation, including auditory brainstem response (ABR) or pure tone audiometry (PTA). Twenty-eight MPS-1 and four MPS-6 patients were analyzed with a median follow-up of 5 years (range 11 months-16 years). Air conduction threshold improved significantly over time (P < .001) with a PTA 1-year post-HCT of 50 ± 0.7 dB to 23 ± 11 dB 13 years post-HCT. Bone conduction threshold worsened with a PTA 1 year post-HCT of 10 ± 7 dB to 18 ± 9 dB 13 years post-HCT (P = .34). The degree of HL varied from mainly mild-severe early after HCT to normal-mild at longer follow-up. The type of HL consisted of mainly conductive in the first years post-HCT in contrast to mainly sensorineural at longer follow-up. MRIs of the cerebellopontine angle did not show abnormalities. HL is still seen in patients with MPS despite HCT and consists of a conductive type early after HCT in contrast to a sensorineural type at longer follow-up in the majority of cases. Yearly follow-up of HL is necessary to timely intervene, as hearing is important in the speech and language development of children and their academic achievements.
Asunto(s)
Pérdida Auditiva Sensorineural/diagnóstico , Trasplante de Células Madre Hematopoyéticas , Mucopolisacaridosis/complicaciones , Mucopolisacaridosis/terapia , Adolescente , Audiometría de Tonos Puros , Umbral Auditivo , Niño , Preescolar , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Pérdida Auditiva Sensorineural/etiología , Humanos , Lactante , Estudios Longitudinales , Imagen por Resonancia Magnética , MasculinoRESUMEN
Glutamate is involved in a variety of metabolic pathways. We reviewed the literature on genetic defects of enzymes that directly metabolise glutamate, leading to inborn errors of glutamate metabolism. Seventeen genetic defects of glutamate metabolising enzymes have been reported, of which three were only recently identified. These 17 defects affect the inter-conversion of glutamine and glutamate, amino acid metabolism, ammonia detoxification, and glutathione metabolism. We provide an overview of the clinical and biochemical phenotypes of these rare defects in an effort to ease their recognition. By categorising these by biochemical pathway, we aim to create insight into the contributing role of deviant glutamate and glutamine levels to the pathophysiology. For those disorders involving the inter-conversion of glutamine and glutamate, these deviant levels are postulated to play a pivotal pathophysiologic role. For the other IEM however-with the exception of urea cycle defects-abnormal glutamate and glutamine concentrations were rarely reported. To create insight into the clinical consequences of disturbed glutamate metabolism-rather than individual glutamate and glutamine levels-the prevalence of phenotypic abnormalities within the 17 IEM was compared to their prevalence within all Mendelian disorders and subsequently all disorders with metabolic abnormalities notated in the Human Phenotype Ontology (HPO) database. For this, a hierarchical database of all phenotypic abnormalities of the 17 defects in glutamate metabolism based on HPO was created. A neurologic phenotypic spectrum of developmental delay, ataxia, seizures, and hypotonia are common in the inborn errors of enzymes in glutamate metabolism. Additionally, ophthalmologic and skin abnormalities are often present, suggesting that disturbed glutamate homeostasis affects tissues of ectodermal origin: brain, eye, and skin. Reporting glutamate and glutamine concentrations in patients with inborn errors of glutamate metabolism would provide additional insight into the pathophysiology.