Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 53(8): 4519-4527, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30882225

RESUMEN

In the biotechnological desulfurization process under haloalkaline conditions, dihydrogen sulfide (H2S) is removed from sour gas and oxidized to elemental sulfur (S8) by sulfide-oxidizing bacteria. Besides S8, the byproducts sulfate (SO42-) and thiosulfate (S2O32-) are formed, which consume caustic and form a waste stream. The aim of this study was to increase selectivity toward S8 by a new process line-up for biological gas desulfurization, applying two bioreactors with different substrate conditions (i.e., sulfidic and microaerophilic), instead of one (i.e., microaerophilic). A 111-day continuous test, mimicking full scale operation, demonstrated that S8 formation was 96.6% on a molar H2S supply basis; selectivity for SO42- and S2O32- were 1.4 and 2.0% respectively. The selectivity for S8 formation in a control experiment with the conventional 1-bioreactor line-up was 75.6 mol %. At start-up, the new process line-up immediately achieved lower SO42- and S2O32- formations compared to the 1-bioreactor line-up. When the microbial community adapted over time, it was observed that SO42- formation further decreased. In addition, chemical formation of S2O32- was reduced due to biologically mediated removal of sulfide from the process solution in the anaerobic bioreactor. The increased selectivity for S8 formation will result in 90% reduction in caustic consumption and waste stream formation compared to the 1-bioreactor line-up.


Asunto(s)
Reactores Biológicos , Tiosulfatos , Oxidación-Reducción , Sulfatos , Sulfuros , Azufre
2.
J Hazard Mater ; 383: 121104, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31586887

RESUMEN

We studied a biotechnological desulfurization process for removal of toxic hydrogen sulfide (H2S) from sour gas. The process consists of two steps: i) Selective absorption of H2S into a (bi)carbonate solution in the absorber column and ii) conversion of sulfide to sulfur by sulfide oxidizing bacteria (SOB) in the aerated bioreactor. In previous studies, several physico-chemical factors were assessed to explain the observed enhancement of H2S absorption in the absorber, but a full explanation was not provided. We investigated the relation between the metabolic activity of SOB and the enhancement factor. Two continuous experiments on pilot-scale were performed to determine H2S absorption efficiencies at different temperatures and biomass concentrations. The absorption efficiency improved at increasing temperatures, i.e. H2S concentration in the treated gas decreased from 715 ±â€¯265 ppmv at 25.4 °C to 69 ±â€¯25 ppmv at 39.4 °C. The opposite trend is expected when H2S absorption is solely determined by physico-chemical factors. Furthermore, increasing biomass concentrations to the absorber also resulted in decreased H2S concentrations in the treated gas, from approximately 6000 ppmv without biomass to 1664 ±â€¯126 ppmv at 44 mg N/L. From our studies it can be concluded that SOB activity enhances H2S absorption and leads to increased H2S removal efficiencies in biotechnological gas desulfurization.


Asunto(s)
Álcalis/química , Gases/química , Halógenos/química , Sulfuro de Hidrógeno/química , Anaerobiosis , Bacterias/metabolismo , Azufre/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA