RESUMEN
Skeletal muscle function is inferred from the spatial arrangement of muscle fiber architecture, which corresponds to myofiber molecular and metabolic features. Myofiber features are often determined using immunofluorescence on a local sampling, typically obtained from a median region. This median region is assumed to represent the entire muscle. However, it remains largely unknown to what extent this local sampling represents the entire muscle. We present a pipeline to study the architecture of muscle fiber features over the entire muscle, including sectioning, staining, imaging to image quantification and data-driven analysis with Myofiber type were identified by the expression of myosin heavy chain (MyHC) isoforms, representing contraction properties. We reconstructed muscle architecture from consecutive cross-sections stained for laminin and MyHC isoforms. Examining the entire muscle using consecutive cross-sections is extremely laborious, we provide consideration to reduce the dataset without loosing spatial information. Data-driven analysis with over 150,000 myofibers showed spatial variations in myofiber geometric features, myofiber type, and the distribution of neuromuscular junctions over the entire muscle. We present a workflow to study histological changes over the entire muscle using high-throughput imaging, image quantification, and data-driven analysis. Our results suggest that asymmetric spatial distribution of these features over the entire muscle could impact muscle function. Therefore, instead of a single sampling from a median region, representative regions covering the entire muscle should be investigated in future studies.
Asunto(s)
Fibras Musculares Esqueléticas , Cadenas Pesadas de Miosina , Músculo Esquelético , Isoformas de ProteínasRESUMEN
Skeletal muscles control posture, mobility and strength, and influence whole-body metabolism. Muscles are built of different types of myofibers, each having specific metabolic, molecular, and contractile properties. Fiber classification is, therefore, regarded the key for understanding muscle biology, (patho-) physiology. The expression of three myosin heavy chain (MyHC) isoforms, MyHC-1, MyHC-2A, and MyHC-2X, marks myofibers in humans. Typically, myofiber classification is performed by an eye-based histological analysis. This classical approach is insufficient to capture complex fiber classes, expressing more than one MyHC-isoform. We, therefore, developed a methodological procedure for high-throughput characterization of myofibers on the basis of multiple isoforms. The mean fluorescence intensity of the three most abundant MyHC isoforms was measured per myofiber in muscle biopsies of 56 healthy elderly adults, and myofiber classes were identified using computational biology tools. Unsupervised clustering revealed the existence of six distinct myofiber clusters. A comparison with the visual assessment of myofibers using the same images showed that some of these myofiber clusters could not be detected or were frequently misclassified. The presence of these six clusters was reinforced by RNA expressions levels of sarcomeric genes. In addition, one of the clusters, expressing all three MyHC isoforms, correlated with histological measures of muscle health. To conclude, this methodological procedure enables deep characterization of the complex muscle heterogeneity. This study opens opportunities to further investigate myofiber composition in comparative studies.
Asunto(s)
Biología Computacional/métodos , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/citología , Cadenas Pesadas de Miosina/metabolismo , Femenino , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismoRESUMEN
Contractile properties of myofibers are dictated by the abundance of myosin heavy chain (MyHC) isoforms. MyHC composition designates muscle function, and its alterations could unravel differential muscle involvement in muscular dystrophies and aging. Current analyses are limited to visual assessments in which myofibers expressing multiple MyHC isoforms are prone to misclassification. As a result, complex patterns and subtle alterations are unidentified. We developed a high-throughput, data-driven myofiber analysis to quantitatively describe the variations in myofibers across the muscle. We investigated alterations in myofiber composition between genotypes, 2 muscles, and 2 age groups. We show that this analysis facilitates the discovery of complex myofiber compositions and its dependency on age, muscle type, and genetic conditions.-Raz, V., Raz, Y., van de Vijver, D., Bindellini, D., van Putten, M., van den Akker, E. B. High-throughput data-driven analysis of myofiber composition reveals muscle-specific disease and age-associated patterns.
Asunto(s)
Envejecimiento/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/metabolismo , Cadenas Pesadas de Miosina/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMEN
The C57BL/10ScSn-Dmdmdx/J (BL10-mdx) mouse has been the most commonly used model for Duchenne muscular dystrophy (DMD) for decades. Their muscle dysfunction and pathology is, however, less severe than in patients with DMD, which complicates preclinical studies. Recent discoveries indicate that disease severity is exacerbated when muscular dystrophy mouse models are generated on a DBA2/J genetic background. Knowledge on the natural history of animal models is pivotal for high-quality preclinical testing. However, for BL10-mdx mice on a DBA2/J background (D2-mdx), limited data are available. We addressed this gap in the natural history knowledge. First, we compared histopathological aspects in skeletal muscles of young D2-mdx, BL10-mdx, and wild-type mice. Pathology was more pronounced in D2-mdx mice and differed in severity between muscles within individuals. Secondly, we subjected D2-mdx mice to a functional test regime for 34 weeks and identified that female D2-mdx mice outperform severely impaired males, making females less useful for functional preclinical studies. Direct comparisons between 10- and 34-wk-old D2-mdx mice revealed that disease pathology ameliorates with age. Heart pathology was progressive, with some features already evident at a young age. This natural history study of the D2-mdx mouse will be instrumental for experimental design of future preclinical studies.-Van Putten, M., Putker, K., Overzier, M., Adamzek, W. A., Pasteuning-Vuhman, S., Plomp, J. J., Aartsma-Rus, A. Natural disease history of the D2-mdx mouse model for Duchenne muscular dystrophy.
Asunto(s)
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos mdx , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatologíaRESUMEN
Poly(A) Binding Protein Nuclear 1 (PABPN1) is a multifunctional regulator of mRNA processing, and its expression levels specifically decline in aging muscles. An expansion mutation in PABPN1 is the genetic cause of oculopharyngeal muscle dystrophy (OPMD), a late onset and rare myopathy. Moreover, reduced PABPN1 expression correlates with symptom manifestation in OPMD. PABPN1 regulates alternative polyadenylation site (PAS) utilization. However, the impact of PAS utilization on cell and tissue function is poorly understood. We hypothesized that altered PABPN1 expression levels is an underlying cause of muscle wasting. To test this, we stably down-regulated PABPN1 in mouse tibialis anterior (TA) muscles by localized injection of adeno-associated viruses expressing shRNA to PABPN1 (shPab). We found that a mild reduction in PABPN1 levels causes muscle pathology including myofiber atrophy, thickening of extracellular matrix and myofiber-type transition. Moreover, reduced PABPN1 levels caused a consistent decline in distal PAS utilization in the 3'-UTR of a subset of OPMD-dysregulated genes. This alternative PAS utilization led to up-regulation of Atrogin-1, a key muscle atrophy regulator, but down regulation of proteasomal genes. Additionally reduced PABPN1 levels caused a reduction in proteasomal activity, and transition in MyHC isotope expression pattern in myofibers. We suggest that PABPN1-mediated alternative PAS utilization plays a central role in aging-associated muscle wasting.
Asunto(s)
Envejecimiento/genética , Proteínas Musculares/biosíntesis , Distrofia Muscular Oculofaríngea/genética , Proteína I de Unión a Poli(A)/genética , Proteínas Ligasas SKP Cullina F-box/biosíntesis , Envejecimiento/patología , Animales , Dependovirus/genética , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patología , Proteína I de Unión a Poli(A)/biosíntesis , ARN Mensajero/biosíntesis , Proteínas Ligasas SKP Cullina F-box/genéticaRESUMEN
Duchenne muscular dystrophy is a severe muscle wasting disease, characterized by a severely reduced lifespan in which cardiomyopathy is one of the leading causes of death. Multiple therapies aiming at dystrophin restoration have been approved. It is anticipated that these therapies will maintain muscle function for longer and extend the ambulatory period, which in turn will increase the cardiac workload which could be detrimental for cardiac function. We investigated the effects of voluntary running exercise in combination with low dystrophin levels on function and pathology of skeletal muscle and heart. We divided 15.5-month old female mdx (no dystrophin), mdx-XistΔhs (varying low dystrophin levels) and wild type mice (BL10-WT and XistΔhs-WT) to either a sedentary or voluntary wheel running regime and assessed muscle function at 17.5â¯months of age. Thereafter, a cardiac MRI was obtained, and muscle and heart histopathology were assessed. We show that voluntary exercise is beneficial to skeletal muscle and heart function in dystrophic mice while not affecting muscle pathology. Low amounts of dystrophin further improve skeletal muscle and cardiac function. These findings suggest that voluntary exercise may be beneficial for skeletal muscle and heart in DMD patients, especially in conjunction with low amounts of dystrophin.
Asunto(s)
Corazón/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Miocardio/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Western Blotting , Femenino , Masculino , Actividad Motora/fisiología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismoRESUMEN
Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.-Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kielbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration.
Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Músculo Esquelético/fisiología , Mioblastos/fisiología , Regeneración/fisiología , Receptores de Activinas Tipo I/genética , Animales , Secuencia de Bases , Línea Celular , Daño del ADN , Regulación hacia Abajo , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos mdx , Desarrollo de Músculos/fisiología , Oligonucleótidos Antisentido/farmacología , ARN/genética , ARN/metabolismo , Regeneración/genética , Transducción de SeñalRESUMEN
Duchenne muscular dystrophy (DMD) is an X-linked myopathy caused by dystrophin deficiency. Dystrophin is present intracellularly at the sarcolemma, connecting actin to the dystrophin-associated glycoprotein complex. Interestingly, it is enriched postsynaptically at the neuromuscular junction (NMJ), but its synaptic function is largely unknown. Utrophin, a dystrophin homologue, is also concentrated at the NMJ, and upregulated in DMD. It is possible that the absence of dystrophin at NMJs in DMD causes neuromuscular transmission defects that aggravate muscle weakness. We studied NMJ function in mdx mice (lacking dystrophin) and wild type mice. In addition, mdx/utrn(+/-) and mdx/utrn(-/-) mice (lacking utrophin) were used to investigate influences of utrophin levels. The three Duchenne mouse models showed muscle weakness when comparatively tested in vivo, with mdx/utrn(-/-) mice being weakest. Ex vivo muscle contraction and electrophysiological studies showed a reduced safety factor of neuromuscular transmission in all models. NMJs had ~ 40% smaller miniature endplate potential amplitudes compared with wild type, indicating postsynaptic sensitivity loss for the neurotransmitter acetylcholine. However, nerve stimulation-evoked endplate potential amplitudes were unchanged. Consequently, quantal content (i.e. the number of acetylcholine quanta released per nerve impulse) was considerably increased. Such a homeostatic compensatory increase in neurotransmitter release is also found at NMJs in myasthenia gravis, where autoantibodies reduce acetylcholine receptors. However, high-rate nerve stimulation induced exaggerated endplate potential rundown. Study of NMJ morphology showed that fragmentation of acetylcholine receptor clusters occurred in all models, being most severe in mdx/utrn(-/-) mice. Overall, we showed mild 'myasthenia-like' neuromuscular synaptic dysfunction in several Duchenne mouse models, which possibly affects muscle weakness and degeneration.
Asunto(s)
Modelos Animales de Enfermedad , Distrofia Muscular de Duchenne/fisiopatología , Unión Neuromuscular/fisiopatología , Transmisión Sináptica , Potenciales de Acción , Animales , Distrofina/genética , Femenino , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Potenciales Postsinápticos Miniatura , Fatiga Muscular , Fuerza Muscular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Respiración , Utrofina/genéticaRESUMEN
Duchenne muscular dystrophy is caused by mutations that prevent synthesis of functional dystrophin. All patients develop dilated cardiomyopathy. Promising therapeutic approaches are underway that successfully restore dystrophin expression in skeletal muscle. However, their efficiency in the heart is limited. Improved quality and function of only skeletal muscle potentially accelerate the development of cardiomyopathy. Our study aimed to elucidate which dystrophin levels in the heart are required to prevent or delay cardiomyopathy in mice. Heart function and pathology assessed with magnetic resonance imaging and histopathological analysis were compared between 2, 6 and 10-month-old female mdx-Xist(Δhs) mice, expressing low dystrophin levels (3-15%) in a mosaic manner based on skewed X-inactivation, dystrophin-negative mdx mice, and wild type mice of corresponding genetic backgrounds and gender. With age mdx mice developed dilated cardiomyopathy and hypertrophy, whereas the onset of heart pathology was delayed and function improved in mdx-Xist(Δhs) mice. The ejection fraction, the most severely affected parameter for both ventricles, correlated to dystrophin expression and the percentage of fibrosis. Fibrosis was partly reduced from 9.8% in mdx to 5.4% in 10 month old mdx-Xist(Δhs) mice. These data suggest that mosaic expression of 4-15% dystrophin in the heart is sufficient to delay the onset and ameliorate cardiomyopathy in mice.
Asunto(s)
Biomarcadores/metabolismo , Distrofina/fisiología , Fibrosis/prevención & control , Insuficiencia Cardíaca/prevención & control , Distrofia Muscular Animal/complicaciones , Distrofia Muscular de Duchenne/complicaciones , Animales , Western Blotting , Femenino , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patologíaRESUMEN
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by the lack of functional dystrophin. There is no cure, but several clinical trials aimed to restore the synthesis of functional dystrophin are underway. The dystrophin levels needed for improvement of muscle pathology, function, and overall vitality are not known. Here, we describe the mdx/utrn(-/-)/Xist(Δhs) mouse model, which expresses a range of low dystrophin levels, depending on the degree of skewing of X inactivation in a utrophin-negative background. Mdx/utrn(-/-) mice develop severe muscle weakness, kyphosis, respiratory and heart failure, and premature death closely resembling DMD pathology. We show that at dystrophin levels < 4%, survival and motor function in these animals are greatly improved. In mice expressing >4% dystrophin, histopathology is ameliorated, as well. These findings suggest that the dystrophin levels needed to benefit vitality and functioning of patients with DMD might be lower than those needed for full protection against muscle damage.
Asunto(s)
Distrofina/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Utrofina/deficiencia , Animales , Biomarcadores/sangre , Distrofina/deficiencia , Distrofina/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Fuerza Muscular/genética , Fuerza Muscular/fisiología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Fenotipo , Utrofina/genéticaRESUMEN
Insulin-like growth factor-1 (IGF-1) has been considered as a therapeutic agent for muscle wasting conditions including Duchenne muscular dystrophy as it stimulates muscle regeneration, growth and function. Several preclinical and clinical studies have been conducted to show the therapeutic potential of IGF-1, however, delivery issues, short half-life and isoform complexity have impose challenges. Antisense oligonucleotides (AONs) are able to downregulate target proteins by interfering with their transcripts. Here, we investigated the feasibility of enhancing IGF-1 signaling by downregulation of IGF-binding proteins. We observed that out of frame exon skipping of Igfbp1 and Igfbp3 downregulated their protein expression, which increased Akt phosphorylation on the downstream IGF-1 signaling in vitro. 3'RNA sequencing analysis revealed the related transcriptome in C2C12 cells in response to IGFBP3 downregulation. The AONs did however not induce any exon skipping or protein knockdown in mdx mice after 6 weeks of systemic treatment. We conclude that IGFBP downregulation could be a good strategy to increase IGF-1 signaling but alternative tools are needed for efficient delivery and knockdown in vivo.
Asunto(s)
Distrofina , Oligonucleótidos Antisentido , Ratones , Animales , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Distrofina/genética , Ratones Endogámicos mdx , Factor I del Crecimiento Similar a la Insulina/metabolismo , Regulación hacia Abajo , Oligonucleótidos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismoRESUMEN
Duchenne muscular dystrophy is a severe neuromuscular disorder that is caused by mutations in the DMD gene, resulting in a disruption of dystrophin production. Next to dystrophin expression in the muscle, different isoforms of the protein are also expressed in the brain and lack of these isoforms leads to cognitive and behavioral deficits in patients. It remains unclear how the loss of the shorter dystrophin isoform Dp140 affects these processes. Using a variety of behavioral tests, we found that mdx and mdx4cv mice (which lack Dp427 or Dp427 + Dp140, respectively) exhibit similar deficits in working memory, movement patterns and blood-brain barrier integrity. Neither model showed deficits in spatial learning and memory, learning flexibility, anxiety or spontaneous behavior, nor did we observe differences in aquaporin 4 and glial fibrillary acidic protein. These results indicate that in contrast to Dp427, Dp140 does not play a crucial role in processes of learning, memory and spontaneous behavior.
Asunto(s)
Barrera Hematoencefálica , Distrofina , Distrofia Muscular de Duchenne , Animales , Ratones , Acuaporina 4/genética , Acuaporina 4/metabolismo , Barrera Hematoencefálica/metabolismo , Distrofina/genética , Distrofina/metabolismo , Memoria , Memoria a Corto Plazo , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologíaRESUMEN
The C57BL/10ScSn-Dmdmdx/J (mdx) mouse model has been used by researchers for decades as a model to study pathology of and develop therapies for Duchenne muscular dystrophy. However, the model is relatively mildly affected compared to the human situation. Recently, the D2.B10-Dmdmdx/J (D2.mdx) mouse model was suggested as a more severely affected and therefore better alternative. While the pathology of this model is indeed more pronounced early in life, it is not progressive, and increasing evidence suggest that it actually partially resolves with age. As such, caution is needed when using this model. However, as preclinical experts of the TREAT-NMD advisory committee for therapeutics (TACT), we frequently encounter study designs that underestimate this caveat. We here provide context for how to best use the two models for preclinical studies at the current stage of knowledge.
Asunto(s)
Distrofia Muscular de Duchenne , Animales , Ratones , Humanos , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/patología , Ratones Endogámicos C57BL , Comités Consultivos , Modelos Animales de EnfermedadRESUMEN
Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients to restore dystrophin expression by reframing the disrupted open reading frame of the DMD transcript. However, the treatment efficacy of the already conditionally approved AONs remains low. Aiming to optimize AON efficiency, we assessed exon 53 skipping of the DMD transcript with different chemically modified AONs, all with a phosphorothioate backbone: 2'-O-methyl (2'OMe), locked nucleic acid (LNA)-2'OMe, 2'-fluoro (FRNA), LNA-FRNA, αLNA-FRNA, and FANA-LNA-FRNA. Efficient exon 53 skipping was observed with the FRNA, LNA-FRNA, and LNA-2'OMe AONs in human control myoblast cultures. Weekly subcutaneous injections (50 mg/kg AON) for a duration of 6 weeks were well tolerated by hDMDdel52/mdx males. Treatment with the LNA-FRNA and LNA-2'OMe AONs resulted in pronounced exon 53 skip levels in skeletal muscles and heart up to 90%, but no dystrophin restoration was observed. This discrepancy was mainly ascribed to the strong binding nature of LNA modifications to RNA, thereby interfering with the amplification of the unskipped product resulting in artificial overamplification of the exon 53 skip product. Our study highlights that treatment effect on RNA and protein level should both be considered when assessing AON efficiency.
Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Masculino , Animales , Ratones , Humanos , Distrofina/genética , Oligonucleótidos Antisentido/uso terapéutico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Ratones Endogámicos mdx , Terapia Genética/métodos , Exones/genética , ARNRESUMEN
Downregulation of genes involved in the secondary pathology of Duchenne muscular dystrophy, for example, inflammation, fibrosis, and adiposis, is an interesting approach to ameliorate degeneration of muscle and replacement by fibrotic and adiposis tissue. Small interfering RNAs (siRNAs) are able to downregulate target genes, however, delivery of siRNAs to skeletal muscle still remains a challenge. We investigated delivery of fully chemically modified, cholesterol-conjugated siRNAs targeting Alk4, a nontherapeutic target that is expressed highly in muscle. We observed that a single intravenous or intraperitoneal (IP) injection of 10 mg/kg resulted in significant downregulation of Alk4 mRNA expression in skeletal muscles in both wild-type and mdx mice. Treatment with multiple IP injections of 10 mg/kg led to an overall reduction of Alk4 expression, reaching significance in tibialis anterior (39.7% ± 6.2%), diaphragm (32.7% ± 5.8%), and liver (41.3% ± 29.9%) in mdx mice. Doubling of the siRNA dose did not further increase mRNA silencing in muscles of mdx mice. The chemically modified conjugated siRNAs used in this study are very promising for delivery to both nondystrophic and dystrophic muscles and could have major implications for treatment of muscular dystrophy pathology.
Asunto(s)
Distrofia Muscular de Duchenne , Ratones , Animales , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Ratones Endogámicos mdx , Distrofina/genética , Regulación hacia Abajo , ARN Interferente Pequeño/uso terapéutico , Músculo Esquelético/patología , ARN Mensajero/metabolismo , Modelos Animales de EnfermedadRESUMEN
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene that disrupt the open reading frame and thus prevent production of functional dystrophin proteins. Recent advances in DMD treatment, notably exon skipping and AAV gene therapy, have achieved some success aimed at alleviating the symptoms related to progressive muscle damage. However, they do not address the brain comorbidities associated with DMD, which remains a critical aspect of the disease. The mdx52 mouse model recapitulates one of the most frequent genetic pathogenic variants associated with brain involvement in DMD. Deletion of exon 52 impedes expression of two brain dystrophins, Dp427 and Dp140, expressed from distinct promoters. Interestingly, this mutation is eligible for exon skipping strategies aimed at excluding exon 51 or 53 from dystrophin mRNA. We previously showed that exon 51 skipping can restore partial expression of internally deleted yet functional Dp427 in the brain following intracerebroventricular (ICV) injection of antisense oligonucleotides (ASO). This was associated with a partial improvement of anxiety traits, unconditioned fear response, and Pavlovian fear learning and memory in the mdx52 mouse model. In the present study, we investigated in the same mouse model the skipping of exon 53 in order to restore expression of both Dp427 and Dp140. However, in contrast to exon 51, we found that exon 53 skipping was particularly difficult in mdx52 mice and a combination of multiple ASOs had to be used simultaneously to reach substantial levels of exon 53 skipping, regardless of their chemistry (tcDNA, PMO, or 2'MOE). Following ICV injection of a combination of ASO sequences, we measured up to 25% of exon 53 skipping in the hippocampus of treated mdx52 mice, but this did not elicit significant protein restoration. These findings indicate that skipping mouse dystrophin exon 53 is challenging. As such, it has not yet been possible to answer the pertinent question whether rescuing both Dp427 and Dp140 in the brain is imperative to more optimal treatment of neurological aspects of dystrophinopathy.
RESUMEN
BACKGROUND: Becker muscular dystrophy (BMD) is an X-linked disorder characterized by slow, progressive muscle damage and muscle weakness. Hallmarks include fibre-size variation and replacement of skeletal muscle with fibrous and adipose tissues, after repeated cycles of regeneration. Muscle histology can detect these features, but the required biopsies are invasive, are difficult to repeat and capture only small muscle volumes. Diffusion-tensor magnetic resonance imaging (DT-MRI) is a potential non-invasive alternative that can calculate muscle fibre diameters when applied with the novel random permeable barrier model (RPBM). In this study, we assessed muscle fibre diameters using DT-MRI in BMD patients and healthy controls and compared these with histology. METHODS: We included 13 BMD patients and 9 age-matched controls, who underwent water-fat MRI and DT-MRI at multiple diffusion times, allowing RPBM parameter estimation in the lower leg muscles. Tibialis anterior muscle biopsies were taken from the contralateral leg in 6 BMD patients who underwent DT-MRI and from an additional 32 BMD patients and 15 healthy controls. Laminin and Sirius-red stainings were performed to evaluate muscle fibre morphology and fibrosis. Twelve ambulant patients from the MRI cohort underwent the North Star ambulatory assessment, and 6-min walk, rise-from-floor and 10-m run/walk functional tests. RESULTS: RPBM fibre diameter was significantly larger in BMD patients (P = 0.015): mean (SD) = 68.0 (25.3) µm versus 59.4 (19.2) µm in controls. Inter-muscle differences were also observed (P ≤ 0.002). Both inter- and intra-individual RPBM fibre diameter variability were similar between groups. Laminin staining agreed with the RPBM, showing larger median fibre diameters in patients than in controls: 72.5 (7.9) versus 63.2 (6.9) µm, P = 0.006. However, despite showing similar inter-individual variation, patients showed more intra-individual fibre diameter variability than controls-mean variance (SD) = 34.2 (7.9) versus 21.4 (6.9) µm, P < 0.001-and larger fibrosis areas: median (interquartile range) = 21.7 (5.6)% versus 14.9 (3.4)%, P < 0.001. Despite good overall agreement of RPBM and laminin fibre diameters, they were not associated in patients who underwent DT-MRI and muscle biopsy, perhaps due to lack of colocalization of DT-MRI with biopsy samples. CONCLUSIONS: DT-MRI RPBM metrics agree with histology and can quantify changes in muscle fibre size that are associated with regeneration without the need for biopsies. They therefore show promise as imaging biomarkers for muscular dystrophies.
Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/patología , Laminina , Músculo Esquelético/patología , Fibras Musculares Esqueléticas/patología , Imagen por Resonancia MagnéticaRESUMEN
Neuromuscular disorders (NMDs) are a heterogenous group of rare inherited diseases that compromise the function of peripheral nerves and/or muscles. With limited treatment options available, there is a growing need to design effective preclinical studies that can lead to greater success in clinical trials for novel therapeutics. Here, I discuss recent advances in modelling NMDs to improve preclinical studies as well as two articles from this issue that work in parallel to enable a deeper understanding of a particularly rare NMD, known as X-linked myotubular myopathy.
Asunto(s)
Miopatías Estructurales Congénitas , Enfermedades Neuromusculares , Humanos , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/terapia , Enfermedades Raras/terapiaRESUMEN
Limb girdle muscular dystrophy type 2D (LGMD2D) is characterized by progressive weakening of muscles in the hip and shoulder girdles. It is caused by a mutation in the α-sarcoglycan gene and results in absence of α-sarcoglycan in the dystrophin-glycoprotein complex. The activin type IIB receptor is involved in the activin/myostatin pathway, with myostatin being a negative regulator of muscle growth. In this study, we investigated the effects of sequestering myostatin by a soluble activin type IIB receptor (sActRIIB) on muscle growth in Sgca-null mice, modelling LGMD2D. Treatment was initiated at 3 weeks of age, prior to the disease onset, or at 9 weeks of age when already in an advanced stage of the disease. We found that early sActRIIB treatment resulted in increased muscle size. However, this led to more rapid decline of muscle function than in saline-treated Sgca-null mice. Furthermore, no histopathological improvements were seen after sActRIIB treatment. When initiated at 9 weeks of age, sActRIIB treatment resulted in increased muscle mass too, but to a lesser extent. No effect of the treatment was observed on muscle function or histopathology. These data show that sActRIIB treatment as a stand-alone therapy does not improve muscle function or histopathology in Sgca-null mice.
Asunto(s)
Miostatina , Sarcoglicanopatías , Receptores de Activinas/metabolismo , Activinas/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Músculo Esquelético/patología , Miostatina/genética , Sarcoglicanopatías/metabolismo , Sarcoglicanos/genética , Sarcoglicanos/metabolismoRESUMEN
Muscle atrophy is common in patients with increased glucocorticoid exposure. Glucocorticoid effects are often sex-specific, and while different glucocorticoid responses between male and female subjects are reported, it is unclear why this is. In this study, we evaluated the effects of corticosterone and synthetic glucocorticoid treatment on muscle atrophy in male and female mice. We found that corticosterone treatment reduced grip strength in female mice only, whereas muscle mass was reduced in both sexes. Skeletal muscle transcriptional responses to corticosterone treatment were more pronounced and widespread in male mice. Synthetic glucocorticoid treatment reduced grip strength in both sexes, while female mice were more sensitive to muscle atrophy than male mice. To evaluate the role of androgens, chemically-castrated male mice were treated with synthetic glucocorticoids. We observed additively reduced muscle mass, but did not observe any interaction effects. Although sex differences in glucocorticoid responses in skeletal muscle are partly influenced by androgen signaling, further studies are warranted to fully delineate the underlying mechanisms.