Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Gastroenterology ; 157(1): 210-226.e12, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30878468

RESUMEN

BACKGROUND & AIMS: The CCNE1 locus, which encodes cyclin E1, is amplified in many types of cancer cells and is activated in hepatocellular carcinomas (HCCs) from patients infected with hepatitis B virus or adeno-associated virus type 2, due to integration of the virus nearby. We investigated cell-cycle and oncogenic effects of cyclin E1 overexpression in tissues of mice. METHODS: We generated mice with doxycycline-inducible expression of Ccne1 (Ccne1T mice) and activated overexpression of cyclin E1 from age 3 weeks onward. At 14 months of age, livers were collected from mice that overexpress cyclin E1 and nontransgenic mice (controls) and analyzed for tumor burden and by histology. Mouse embryonic fibroblasts (MEFs) and hepatocytes from Ccne1T and control mice were analyzed to determine the extent to which cyclin E1 overexpression perturbs S-phase entry, DNA replication, and numbers and structures of chromosomes. Tissues from 4-month-old Ccne1T and control mice (at that age were free of tumors) were analyzed for chromosome alterations, to investigate the mechanisms by which cyclin E1 predisposes hepatocytes to transformation. RESULTS: Ccne1T mice developed more hepatocellular adenomas and HCCs than control mice. Tumors developed only in livers of Ccne1T mice, despite high levels of cyclin E1 in other tissues. Ccne1T MEFs had defects that promoted chromosome missegregation and aneuploidy, including incomplete replication of DNA, centrosome amplification, and formation of nonperpendicular mitotic spindles. Whereas Ccne1T mice accumulated near-diploid aneuploid cells in multiple tissues and organs, polyploidization was observed only in hepatocytes, with losses and gains of whole chromosomes, DNA damage, and oxidative stress. CONCLUSIONS: Livers, but not other tissues of mice with inducible overexpression of cyclin E1, develop tumors. More hepatocytes from the cyclin E1-overexpressing mice were polyploid than from control mice, and had losses or gains of whole chromosomes, DNA damage, and oxidative stress; all of these have been observed in human HCC cells. The increased risk of HCC in patients with hepatitis B virus or adeno-associated virus type 2 infection might involve activation of cyclin E1 and its effects on chromosomes and genomes of liver cells.


Asunto(s)
Adenoma de Células Hepáticas/genética , Carcinoma Hepatocelular/genética , Inestabilidad Cromosómica/genética , Ciclina E/genética , Neoplasias Hepáticas/genética , Hígado/metabolismo , Proteínas Oncogénicas/genética , Adenoma de Células Hepáticas/patología , Adenoma de Células Hepáticas/virología , Animales , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Estructuras Cromosómicas , Daño del ADN/genética , Replicación del ADN , Dependovirus , Fibroblastos , Hepatitis B Crónica , Hepatocitos , Hígado/patología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Ratones , Estrés Oxidativo/genética , Infecciones por Parvoviridae , Parvovirinae , Poliploidía , Puntos de Control de la Fase S del Ciclo Celular
2.
Chromosome Res ; 24(1): 67-76, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26615533

RESUMEN

Centrosomes are microtubule-organizing centers that duplicate in S phase to form bipolar spindles that separate duplicated chromosomes faithfully into two daughter cells during cell division. Recent studies show that proper timing of centrosome dynamics, the disjunction and movement of centrosomes, is tightly linked to spindle symmetry, correct microtubule-kinetochore attachment, and chromosome segregation. Here, we review mechanisms that regulate centrosome dynamics, with emphasis on the roles of key mitotic kinases in the proper timing of centrosome dynamics and how aberrancies in these processes may cause chromosomal instability and cancer.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Inestabilidad Cromosómica , Cromosomas Humanos/metabolismo , Neoplasias/metabolismo , Proteínas Quinasas/metabolismo , Fase S , Animales , Proteínas de Ciclo Celular/genética , Cromosomas Humanos/genética , Humanos , Cinetocoros/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas Quinasas/genética
3.
Nat Commun ; 14(1): 2983, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225693

RESUMEN

PTEN is a multifaceted tumor suppressor that is highly sensitive to alterations in expression or function. The PTEN C-tail domain, which is rich in phosphorylation sites, has been implicated in PTEN stability, localization, catalytic activity, and protein interactions, but its role in tumorigenesis remains unclear. To address this, we utilized several mouse strains with nonlethal C-tail mutations. Mice homozygous for a deletion that includes S370, S380, T382 and T383 contain low PTEN levels and hyperactive AKT but are not tumor prone. Analysis of mice containing nonphosphorylatable or phosphomimetic versions of S380, a residue hyperphosphorylated in human gastric cancers, reveal that PTEN stability and ability to inhibit PI3K-AKT depends on dynamic phosphorylation-dephosphorylation of this residue. While phosphomimetic S380 drives neoplastic growth in prostate by promoting nuclear accumulation of ß-catenin, nonphosphorylatable S380 is not tumorigenic. These data suggest that C-tail hyperphosphorylation creates oncogenic PTEN and is a potential target for anti-cancer therapy.


Asunto(s)
Carcinogénesis , Fosfohidrolasa PTEN , Animales , Humanos , Masculino , Ratones , Carcinogénesis/genética , Homocigoto , Mutación , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Fosfohidrolasa PTEN/genética , Fosforilación
4.
Trends Genet ; 24(9): 457-66, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18675487

RESUMEN

Although chromosome mis-segregation is a hallmark of cancer cells, its genetic basis and role in malignant transformation remain poorly understood. In recent years, several mouse models have been generated that harbor gene defects that perturb high-fidelity chromosome segregation. Analysis of these models has revealed that whole chromosome instability (W-CIN) can cause, inhibit or have no effect on tumorigenesis. Here we propose that the effect of W-CIN on tumor development depends on the particular W-CIN gene that is defective, including its other cellular functions, the extent or nature of the gene defect, the affected tissue or cell type and the context of other cancer gene mutations.


Asunto(s)
Inestabilidad Cromosómica/genética , Neoplasias/genética , Aneuploidia , Animales , Genes Supresores de Tumor , Predisposición Genética a la Enfermedad , Humanos , Modelos Animales , Neoplasias/patología
5.
Cancer Res ; 81(11): 2995-3007, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33602789

RESUMEN

One of the greatest barriers to curative treatment of neuroblastoma is its frequent metastatic outgrowth prior to diagnosis, especially in cases driven by amplification of the MYCN oncogene. However, only a limited number of regulatory proteins that contribute to this complex MYCN-mediated process have been elucidated. Here we show that the growth arrest-specific 7 (GAS7) gene, located at chromosome band 17p13.1, is preferentially deleted in high-risk MYCN-driven neuroblastoma. GAS7 expression was also suppressed in MYCN-amplified neuroblastoma lacking 17p deletion. GAS7 deficiency led to accelerated metastasis in both zebrafish and mammalian models of neuroblastoma with overexpression or amplification of MYCN. Analysis of expression profiles and the ultrastructure of zebrafish neuroblastoma tumors with MYCN overexpression identified that GAS7 deficiency led to (i) downregulation of genes involved in cell-cell interaction, (ii) loss of contact among tumor cells as critical determinants of accelerated metastasis, and (iii) increased levels of MYCN protein. These results provide the first genetic evidence that GAS7 depletion is a critical early step in the cascade of events culminating in neuroblastoma metastasis in the context of MYCN overexpression. SIGNIFICANCE: Heterozygous deletion or MYCN-mediated repression of GAS7 in neuroblastoma releases an important brake on tumor cell dispersion and migration to distant sites, providing a novel mechanism underlying tumor metastasis in MYCN-driven neuroblastoma.See related commentary by Menard, p. 2815.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Médula Ósea/secundario , Deleción Cromosómica , Regulación Neoplásica de la Expresión Génica , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Neuroblastoma/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Médula Ósea/genética , Neoplasias de la Médula Ósea/metabolismo , Proliferación Celular , Humanos , Ratones , Ratones SCID , Proteína Proto-Oncogénica N-Myc/genética , Proteínas del Tejido Nervioso/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
6.
Cancer Cell ; 32(3): 310-323.e5, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28867147

RESUMEN

A genome-wide association study identified LMO1, which encodes an LIM-domain-only transcriptional cofactor, as a neuroblastoma susceptibility gene that functions as an oncogene in high-risk neuroblastoma. Here we show that dßh promoter-mediated expression of LMO1 in zebrafish synergizes with MYCN to increase the proliferation of hyperplastic sympathoadrenal precursor cells, leading to a reduced latency and increased penetrance of neuroblastomagenesis. The transgenic expression of LMO1 also promoted hematogenous dissemination and distant metastasis, which was linked to neuroblastoma cell invasion and migration, and elevated expression levels of genes affecting tumor cell-extracellular matrix interaction, including loxl3, itga2b, itga3, and itga5. Our results provide in vivo validation of LMO1 as an important oncogene that promotes neuroblastoma initiation, progression, and widespread metastatic dissemination.


Asunto(s)
Carcinogénesis/patología , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Carcinogénesis/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Hiperplasia , Modelos Biológicos , Invasividad Neoplásica , Metástasis de la Neoplasia , Neuroblastoma/genética , Transducción de Señal/genética , Transgenes , Pez Cebra
7.
Nat Cell Biol ; 18(7): 814-21, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27240320

RESUMEN

Phosphatase and tensin homologue (Pten) suppresses neoplastic growth by negatively regulating PI(3)K signalling through its phosphatase activity. To gain insight into the actions of non-catalytic Pten domains in normal physiological processes and tumorigenesis, we engineered mice lacking the PDZ-binding domain (PDZ-BD). Here, we show that the PDZ-BD regulates centrosome movement and that its heterozygous or homozygous deletion promotes aneuploidy and tumour formation. We found that Pten is recruited to pre-mitotic centrosomes in a Plk1-dependent fashion to create a docking site for protein complexes containing the PDZ-domain-containing protein Dlg1 (also known as Sap97) and Eg5 (also known as Kif11), a kinesin essential for centrosome movement and bipolar spindle formation. Docking of Dlg1-Eg5 complexes to Pten depended on Eg5 phosphorylation by the Nek9-Nek6 mitotic kinase cascade and Cdk1. PDZ-BD deletion or Dlg1 ablation impaired loading of Eg5 onto centrosomes and spindle pole motility, yielding asymmetrical spindles that are prone to chromosome missegregation. Collectively, these data demonstrate that Pten, through the Dlg1-binding ability of its PDZ-BD, accumulates phosphorylated Eg5 at duplicated centrosomes to establish symmetrical bipolar spindles that properly segregate chromosomes, and suggest that this function contributes to tumour suppression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Centrosoma/metabolismo , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfohidrolasa PTEN/metabolismo , Polos del Huso/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Homólogo 1 de la Proteína Discs Large , Humanos , Ratones , Mitosis/genética , Fosfohidrolasa PTEN/genética , Proteínas Asociadas a SAP90-PSD95
8.
Science ; 353(6307): 1549-1552, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27708105

RESUMEN

Cyclin A2 activates the cyclin-dependent kinases Cdk1 and Cdk2 and is expressed at elevated levels from S phase until early mitosis. We found that mutant mice that cannot elevate cyclin A2 are chromosomally unstable and tumor-prone. Underlying the chromosomal instability is a failure to up-regulate the meiotic recombination 11 (Mre11) nuclease in S phase, which leads to impaired resolution of stalled replication forks, insufficient repair of double-stranded DNA breaks, and improper segregation of sister chromosomes. Unexpectedly, cyclin A2 controlled Mre11 abundance through a C-terminal RNA binding domain that selectively and directly binds Mre11 transcripts to mediate polysome loading and translation. These data reveal cyclin A2 as a mechanistically diverse regulator of DNA replication combining multifaceted kinase-dependent functions with a kinase-independent, RNA binding-dependent role that ensures adequate repair of common replication errors.


Asunto(s)
Inestabilidad Cromosómica , Ciclina A2/metabolismo , Enzimas Reparadoras del ADN/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Centrosoma/metabolismo , Ciclina A2/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Cinesinas/metabolismo , Proteína Homóloga de MRE11 , Meiosis/genética , Ratones , Ratones Mutantes , Mitosis/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Fase S/genética
9.
Cell Rep ; 3(2): 552-66, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23375375

RESUMEN

Cancer progresses through distinct stages, and mouse models recapitulating traits of this progression are frequently used to explore genetic, morphological, and pharmacological aspects of tumor development. To complement genomic investigations of this process, we here quantify phosphoproteomic changes in skin cancer development using the SILAC mouse technology coupled to high-resolution mass spectrometry. We distill protein expression signatures from our data that distinguish between skin cancer stages. A distinct phosphoproteome of the two stages of cancer progression is identified that correlates with perturbed cell growth and implicates cell adhesion as a major driver of malignancy. Importantly, integrated analysis of phosphoproteomic data and prediction of kinase activity revealed PAK4-PKC/SRC network to be highly deregulated in SCC but not in papilloma. This detailed molecular picture, both at the proteome and phosphoproteome level, will prove useful for the study of mechanisms of tumor progression.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Fosfopéptidos/metabolismo , Proteómica , Neoplasias Cutáneas/metabolismo , Animales , Carcinoma de Células Escamosas/patología , Movimiento Celular , Transformación Celular Neoplásica , Cromatografía Líquida de Alta Presión , Regulación hacia Abajo , Humanos , Marcaje Isotópico , Ratones , Papiloma/metabolismo , Papiloma/patología , Fosfopéptidos/análisis , Fosforilación , Proteína Quinasa C/metabolismo , Proteoma/metabolismo , Piel/metabolismo , Neoplasias Cutáneas/patología , Espectrometría de Masas en Tándem , Titanio/química , Células Tumorales Cultivadas , Regulación hacia Arriba , Quinasas p21 Activadas/metabolismo , Familia-src Quinasas/metabolismo
10.
Nat Cell Biol ; 15(1): 96-102, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23242215

RESUMEN

The BubR1 gene encodes for a mitotic regulator that ensures accurate segregation of chromosomes through its role in the mitotic checkpoint and the establishment of proper microtubule-kinetochore attachments. Germline mutations that reduce BubR1 abundance cause aneuploidy, shorten lifespan and induce premature ageing phenotypes and cancer in both humans and mice. A reduced BubR1 expression level is also a feature of chronological ageing, but whether this age-related decline has biological consequences is unknown. Using a transgenic approach in mice, we show that sustained high-level expression of BubR1 preserves genomic integrity and reduces tumorigenesis, even in the presence of genetic alterations that strongly promote aneuplodization and cancer, such as oncogenic Ras. We find that BubR1 overabundance exerts its protective effect by correcting mitotic checkpoint impairment and microtubule-kinetochore attachment defects. Furthermore, sustained high-level expression of BubR1 extends lifespan and delays age-related deterioration and aneuploidy in several tissues. Collectively, these data uncover a generalized function for BubR1 in counteracting defects that cause whole-chromosome instability and suggest that modulating BubR1 provides a unique opportunity to extend healthy lifespan.


Asunto(s)
Envejecimiento/metabolismo , Expresión Génica , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Cutáneas/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Envejecimiento/patología , Aneuploidia , Animales , Recuento de Células , Proteínas de Ciclo Celular , Células Cultivadas , Inestabilidad Cromosómica , Femenino , Esperanza de Vida , Neoplasias Pulmonares/inducido químicamente , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Neoplasias Cutáneas/inducido químicamente , Células Madre/patología
11.
Cell Cycle ; 15(24): 3329-3330, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27575251

Asunto(s)
Neoplasias , Centrosoma , Humanos
12.
J Cell Biol ; 194(4): 597-612, 2011 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-21859863

RESUMEN

RanBP2/Nup358, the major component of the cytoplasmic filaments of the nuclear pore complex (NPC), is essential for mouse embryogenesis and is implicated in both macromolecular transport and mitosis, but its specific molecular functions are unknown. Using RanBP2 conditional knockout mouse embryonic fibroblasts and a series of mutant constructs, we show that transport, rather than mitotic, functions of RanBP2 are required for cell viability. Cre-mediated RanBP2 inactivation caused cell death with defects in M9- and classical nuclear localization signal (cNLS)-mediated protein import, nuclear export signal-mediated protein export, and messenger ribonucleic acid export but no apparent mitotic failure. A short N-terminal RanBP2 fragment harboring the NPC-binding domain, three phenylalanine-glycine motifs, and one Ran-binding domain (RBD) corrected all transport defects and restored viability. Mutation of the RBD within this fragment caused lethality and perturbed binding to Ran guanosine triphosphate (GTP)-importin-ß, accumulation of importin-ß at nuclear pores, and cNLS-mediated protein import. These data suggest that a critical function of RanBP2 is to capture recycling RanGTP-importin-ß complexes at cytoplasmic fibrils to allow for adequate cNLS-mediated cargo import.


Asunto(s)
Citoesqueleto/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , beta Carioferinas/metabolismo , Proteína de Unión al GTP ran/metabolismo , Transporte Activo de Núcleo Celular , Animales , Sitios de Unión , Línea Celular , Proliferación Celular , Supervivencia Celular , Segregación Cromosómica , Fibroblastos/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Ratones , Ratones Noqueados , Microscopía Fluorescente , Microscopía por Video , Mitosis , Chaperonas Moleculares/genética , Mutación , Señales de Localización Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/deficiencia , Proteínas de Complejo Poro Nuclear/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Señales de Clasificación de Proteína , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Tiempo , Transfección , Ubiquitina-Proteína Ligasas/metabolismo , beta Carioferinas/genética , Proteína de Unión al GTP ran/genética
13.
J Cell Biol ; 188(1): 83-100, 2010 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-20065091

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase functions with the E2 ubiquitin-conjugating enzyme UbcH10 in the orderly progression through mitosis by marking key mitotic regulators for destruction by the 26-S proteasome. UbcH10 is overexpressed in many human cancer types and is associated with tumor progression. However, whether UbcH10 overexpression causes tumor formation is unknown. To address this central question and to define the molecular and cellular consequences of UbcH10 overexpression, we generated a series of transgenic mice in which UbcH10 was overexpressed in graded fashion. In this study, we show that UbcH10 overexpression leads to precocious degradation of cyclin B by the APC/C, supernumerary centrioles, lagging chromosomes, and aneuploidy. Importantly, we find that UbcH10 transgenic mice are prone to carcinogen-induced lung tumors and a broad spectrum of spontaneous tumors. Our results identify UbcH10 as a prominent protooncogene that causes whole chromosome instability and tumor formation over a wide gradient of overexpression levels.


Asunto(s)
Aneuploidia , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Segregación Cromosómica , Regulación Enzimológica de la Expresión Génica , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Ciclo Celular , Línea Celular , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Enzimas Ubiquitina-Conjugadoras/genética
14.
J Cell Biol ; 191(2): 313-29, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20956380

RESUMEN

Cdc20 is an activator of the anaphase-promoting complex/cyclosome that initiates anaphase onset by ordering the destruction of cyclin B1 and securin in metaphase. To study the physiological significance of Cdc20 in higher eukaryotes, we generated hypomorphic mice that express small amounts of this essential cell cycle regulator. In this study, we show that these mice are healthy and not prone to cancer despite substantial aneuploidy. Cdc20 hypomorphism causes chromatin bridging and chromosome misalignment, revealing a requirement for Cdc20 in efficient sister chromosome separation and chromosome-microtubule attachment. We find that cyclin B1 is newly synthesized during mitosis via cytoplasmic polyadenylation element-binding protein-dependent translation, causing its rapid accumulation between prometaphase and metaphase of Cdc20 hypomorphic cells. Anaphase onset is significantly delayed in Cdc20 hypomorphic cells but not when translation is inhibited during mitosis. These data reveal that Cdc20 is particularly rate limiting for cyclin B1 destruction because of regulated de novo synthesis of this cyclin after prometaphase onset.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ciclina B1/biosíntesis , Mitosis , Regiones no Traducidas 3' , Aneuploidia , Animales , Proteínas Cdc20 , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/genética , Células Cultivadas , Segregación Cromosómica , Cromosomas de los Mamíferos/metabolismo , Ciclina B1/química , Ciclina B1/genética , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Cinetocoros/metabolismo , Ratones , Neoplasias/genética , Neurogénesis/genética , Biosíntesis de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA