RESUMEN
AIMS: To analyse glycaemic patterns of professional athletes with type 1 diabetes during a competitive season. MATERIALS AND METHODS: We analysed continuous glucose monitoring data of 12 professional male cyclists with type 1 diabetes during exercise, recovery and sleep on days with competitive exercise (CE) and non-competitive exercise (NCE). We assessed whether differences exist between CE and NCE days and analysed associations between exercise and dysglycaemia. RESULTS: The mean glycated haemoglobin was 50 ± 5 mmol/mol (6.7 ± 0.5%). The athletes cycled on 280.8 ± 28.1 days (entire season 332.6 ± 18.8 days). Overall, time in range (3.9-10 mmol/L) was 70.0 ± 13.7%, time in hypoglycaemia (<3.9 mmol/L) was 6.4 ± 4.7% and time in hyperglycaemia (>10 mmol/L) was 23.6 ± 12.5%. During the nights of NCE days, athletes spent 10.1 ± 7.4% of time in hypoglycaemia, particularly after exercise in the endurance zones. The CE days were characterized by a higher time in hyperglycaemia compared with NCE days (25.2 ± 12.5% vs. 22.2 ± 12.1%, p = .012). This was driven by the CE phase, where time in range dropped to 60.4 ± 13.0% and time in hyperglycaemia was elevated (38.5 ± 12.9%). Mean glucose was higher during CE compared with NCE sessions (9.6 ± 0.9 mmol/L vs. 7.8 ± 1.1 mmol/L, p < .001). The probability of hyperglycaemia during exercise was particularly increased with longer duration, higher intensity and higher variability of exercise. CONCLUSIONS: The analysis of glycaemic patterns of professional endurance athletes revealed that overall glycaemia was generally within targets. For further improvement, athletes, team staff and caregivers may focus on hyperglycaemia during competitions and nocturnal hypoglycaemia after NCE.
Asunto(s)
Diabetes Mellitus Tipo 1 , Hiperglucemia , Hipoglucemia , Humanos , Masculino , Glucemia , Automonitorización de la Glucosa Sanguínea , Estudios Retrospectivos , Estaciones del Año , Hiperglucemia/prevención & control , Atletas , SueñoRESUMEN
OBJECTIVE: To develop a noninvasive hypoglycemia detection approach using smartwatch data. RESEARCH DESIGN AND METHODS: We prospectively collected data from two wrist-worn wearables (Garmin vivoactive 4S, Empatica E4) and continuous glucose monitoring values in adults with diabetes on insulin treatment. Using these data, we developed a machine learning (ML) approach to detect hypoglycemia (<3.9 mmol/L) noninvasively in unseen individuals and solely based on wearable data. RESULTS: Twenty-two individuals were included in the final analysis (age 54.5 ± 15.2 years, HbA1c 6.9 ± 0.6%, 16 males). Hypoglycemia was detected with an area under the receiver operating characteristic curve of 0.76 ± 0.07 solely based on wearable data. Feature analysis revealed that the ML model associated increased heart rate, decreased heart rate variability, and increased tonic electrodermal activity with hypoglycemia. CONCLUSIONS: Our approach may allow for noninvasive hypoglycemia detection using wearables in people with diabetes and thus complement existing methods for hypoglycemia detection and warning.
Asunto(s)
Diabetes Mellitus Tipo 1 , Hipoglucemia , Adulto , Masculino , Humanos , Persona de Mediana Edad , Anciano , Hipoglucemiantes , Automonitorización de la Glucosa Sanguínea/métodos , Glucemia/análisis , Hipoglucemia/diagnóstico , InsulinaRESUMEN
Acute generalized exanthematous pustulosis (AGEP) is a rare skin adverse drug reaction. The pathophysiology and causative drugs associated with AGEP are poorly understood, with the majority of studies in AGEP focusing on a single-drug-outcome association. We therefore aimed to explore and characterize frequently reported drug combinations associated with AGEP using the WHO pharmacovigilance database VigiBase. In this explorative cross-sectional study of a pharmacovigilance database using a data-driven approach, we assessed individual case safety reports (ICSR) with two or more drugs reported to VigiBase. A total of 2649 ICSRs reported two or more drugs. Cardiovascular drugs, including antithrombotics and beta-blockers, were frequently reported in combination with other drugs, particularly antibiotics. The drug pair of amoxicillin and furosemide was reported in 57 ICSRs (2.2%), with an O/E ratio of 1.3, and the combination of bisoprolol and furosemide was recorded 44 times (1.7%), with an O/E ratio of 5.5. The network analysis identified 10 different communities of varying sizes. The largest cluster primarily consisted of cardiovascular drugs. This data-driven and exploratory study provides the largest real-world assessment of drugs associated with AGEP to date. The results identify a high frequency of cardiovascular drugs, particularly used in combination with antibiotics.
RESUMEN
The novel coronavirus (SARS-CoV-2) has rapidly developed into a global epidemic. To control its spread, countries have implemented non-pharmaceutical interventions (NPIs), such as school closures, bans of small gatherings, or even stay-at-home orders. Here we study the effectiveness of seven NPIs in reducing the number of new infections, which was inferred from the reported cases of COVID-19 using a semi-mechanistic Bayesian hierarchical model. Based on data from the first epidemic wave of n = 20 countries (i.e., the United States, Canada, Australia, the EU-15 countries, Norway, and Switzerland), we estimate the relative reduction in the number of new infections attributed to each NPI. Among the NPIs considered, bans of large gatherings were most effective, followed by venue and school closures, whereas stay-at-home orders and work-from-home orders were least effective. With this retrospective cross-country analysis, we provide estimates regarding the effectiveness of different NPIs during the first epidemic wave.