Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 70(3): 516-530.e6, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706535

RESUMEN

Glycoproteins engaged in unproductive folding in the ER are marked for degradation by a signal generated by progressive demannosylation of substrate N-glycans that is decoded by ER lectins, but how the two lectins, OS9 and XTP3B, contribute to non-glycosylated protein triage is unknown. We generated cell lines with homozygous deletions of both lectins individually and in combination. We found that OS9 and XTP3B redundantly promote glycoprotein degradation and stabilize the SEL1L/HRD1 dislocon complex, that XTP3B profoundly inhibits the degradation of non-glycosylated proteins, and that OS9 antagonizes this inhibition. The relative expression of OS9 and XTP3B and the distribution of glycan and non-glycan degrons within the same protein contribute to the fidelity and processivity of glycoprotein triage and, therefore, determine the fates of newly synthesized proteins in the early secretory pathway.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Lectinas/metabolismo , Proteínas de Neoplasias/metabolismo , Polisacáridos/metabolismo , Línea Celular , Línea Celular Tumoral , Glicoproteínas/metabolismo , Glicosilación , Células HEK293 , Humanos , Células K562 , Pliegue de Proteína , Sistemas de Translocación de Proteínas/metabolismo
2.
Cell ; 142(4): 601-12, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20723760

RESUMEN

Fibrillar protein aggregates are the major pathological hallmark of several incurable, age-related, neurodegenerative disorders. These aggregates typically contain aggregation-prone pathogenic proteins, such as amyloid-beta in Alzheimer's disease and alpha-synuclein in Parkinson's disease. It is, however, poorly understood how these aggregates are formed during cellular aging. Here we identify an evolutionarily highly conserved modifier of aggregation, MOAG-4, as a positive regulator of aggregate formation in C. elegans models for polyglutamine diseases. Inactivation of MOAG-4 suppresses the formation of compact polyglutamine aggregation intermediates that are required for aggregate formation. The role of MOAG-4 in driving aggregation extends to amyloid-beta and alpha-synuclein and is evolutionarily conserved in its human orthologs SERF1A and SERF2. MOAG-4/SERF appears to act independently from HSF-1-induced molecular chaperones, proteasomal degradation, and autophagy. Our results suggest that MOAG-4/SERF regulates age-related proteotoxicity through a previously unexplored pathway, which will open up new avenues for research on age-related, neurodegenerative diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Senescencia Celular , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Proteínas de Caenorhabditis elegans/química , Línea Celular , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteínas del Tejido Nervioso/química , Péptidos/metabolismo , Proteínas/química , alfa-Sinucleína/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(37): 14912-7, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22927396

RESUMEN

Toxicity of aggregation-prone proteins is thought to play an important role in aging and age-related neurological diseases like Parkinson and Alzheimer's diseases. Here, we identify tryptophan 2,3-dioxygenase (tdo-2), the first enzyme in the kynurenine pathway of tryptophan degradation, as a metabolic regulator of age-related α-synuclein toxicity in a Caenorhabditis elegans model. Depletion of tdo-2 also suppresses toxicity of other heterologous aggregation-prone proteins, including amyloid-ß and polyglutamine proteins, and endogenous metastable proteins that are sensors of normal protein homeostasis. This finding suggests that tdo-2 functions as a general regulator of protein homeostasis. Analysis of metabolite levels in C. elegans strains with mutations in enzymes that act downstream of tdo-2 indicates that this suppression of toxicity is independent of downstream metabolites in the kynurenine pathway. Depletion of tdo-2 increases tryptophan levels, and feeding worms with extra L-tryptophan also suppresses toxicity, suggesting that tdo-2 regulates proteotoxicity through tryptophan. Depletion of tdo-2 extends lifespan in these worms. Together, these results implicate tdo-2 as a metabolic switch of age-related protein homeostasis and lifespan. With TDO and Indoleamine 2,3-dioxygenase as evolutionarily conserved human orthologs of TDO-2, intervening with tryptophan metabolism may offer avenues to reducing proteotoxicity in aging and age-related diseases.


Asunto(s)
Envejecimiento/fisiología , Homeostasis/fisiología , Triptófano Oxigenasa/metabolismo , Triptófano/metabolismo , alfa-Sinucleína/toxicidad , Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Cromatografía Liquida , Biología Computacional , Cartilla de ADN/genética , Fertilidad/genética , Immunoblotting , Longevidad/genética , Péptidos/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem , Triptófano/química , Triptófano Oxigenasa/antagonistas & inhibidores
4.
EMBO J ; 28(23): 3758-70, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19875982

RESUMEN

The ATP-dependent protein chaperone heat-shock protein 70 (Hsp70) displays broad anti-aggregation functions and has a critical function in preventing protein misfolding pathologies. According to in vitro and in vivo models of Parkinson's disease (PD), loss of Hsp70 activity is associated with neurodegeneration and the formation of amyloid deposits of alpha-synuclein (alphaSyn), which constitute the intraneuronal inclusions in PD patients known as Lewy bodies. Here, we show that Hsp70 depletion can be a direct result of the presence of aggregation-prone polypeptides. We show a nucleotide-dependent interaction between Hsp70 and alphaSyn, which leads to the aggregation of Hsp70, in the presence of ADP along with alphaSyn. Such a co-aggregation phenomenon can be prevented in vitro by the co-chaperone Hip (ST13), and the hypothesis that it might do so also in vivo is supported by studies of a Caenorhabditis elegans model of alphaSyn aggregation. Our findings indicate that a decreased expression of Hip could facilitate depletion of Hsp70 by amyloidogenic polypeptides, impairing chaperone proteostasis and stimulating neurodegeneration.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Homeostasis/fisiología , Complejos Multiproteicos/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Supresoras de Tumor/fisiología , alfa-Sinucleína/metabolismo , Adenosina Trifosfato/fisiología , Amiloide/antagonistas & inhibidores , Amiloide/biosíntesis , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Línea Celular Tumoral , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Humanos , Chaperonas Moleculares , Complejos Multiproteicos/antagonistas & inhibidores , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/prevención & control , Enfermedad de Parkinson/etiología , Péptidos/antagonistas & inhibidores , Péptidos/fisiología , Pliegue de Proteína , Estabilidad Proteica , Ratas , Proteínas Supresoras de Tumor/antagonistas & inhibidores , alfa-Sinucleína/antagonistas & inhibidores
5.
Chemphyschem ; 12(3): 673-680, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21308945

RESUMEN

Misfolding and aggregation of amyloidogenic polypeptides lie at the root of many neurodegenerative diseases. Whilst protein aggregation can be readily studied in vitro by established biophysical techniques, direct observation of the nature and kinetics of aggregation processes taking place in vivo is much more challenging. We describe here, however, a Förster resonance energy transfer sensor that permits the aggregation kinetics of amyloidogenic proteins to be quantified in living systems by exploiting our observation that amyloid assemblies can act as energy acceptors for variants of fluorescent proteins. The observed lifetime reduction can be attributed to fluorescence energy transfer to intrinsic energy states associated with the growing amyloid species. Indeed, for a-synuclein, a protein whose aggregation is linked to Parkinson's disease, we have used this sensor to follow the kinetics of the self-association reactions taking place in vitro and in vivo and to reveal the nature of the ensuing aggregated species. Experiments were conducted in vitro, in cells in culture and in living Caenorhabditis elegans. For the latter the readout correlates directly with the appearance of a toxic phenotype. The ability to measure the appearance and development of pathogenic amyloid species in a living animal and the ability to relate such data to similar processes observed in vitro provides a powerful new tool in the study of the pathology of the family of misfolding disorders. Our study confirms the importance of the molecular environment in which aggregation reactions take place, highlighting similarities as well as differences between the processes occurring in vitro and in vivo, and their significance for defining the molecular physiology of the diseases with which they are associated.


Asunto(s)
Amiloide/química , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
6.
Trends Mol Med ; 19(6): 336-44, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23562344

RESUMEN

Aging is an important risk factor for many debilitating diseases, including cancer and neurodegeneration. In model organisms, interfering with metabolic signaling pathways, including the insulin/insulin-like growth factor (IGF) 1 (IIS) and TOR pathways, can protect against age-related pathologies and increase lifespan. Recent studies in multiple organisms have implicated tryptophan metabolism as a powerful regulator of age-related diseases and lifespan. Its high conservation throughout evolution has enabled studies that begin to dissect the contribution of individual enzymes and metabolites. Here, we focus on the emerging view of tryptophan metabolism as a pathway that integrates environmental and metabolic signals to regulate animal biology and health.


Asunto(s)
Envejecimiento/metabolismo , Triptófano/metabolismo , Envejecimiento/patología , Animales , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA