Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 104(3): 520-529, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30824121

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes responsible for charging tRNA molecules with cognate amino acids. Consistent with the essential function and ubiquitous expression of ARSs, mutations in 32 of the 37 ARS-encoding loci cause severe, early-onset recessive phenotypes. Previous genetic and functional data suggest a loss-of-function mechanism; however, our understanding of the allelic and locus heterogeneity of ARS-related disease is incomplete. Cysteinyl-tRNA synthetase (CARS) encodes the enzyme that charges tRNACys with cysteine in the cytoplasm. To date, CARS variants have not been implicated in any human disease phenotype. Here, we report on four subjects from three families with complex syndromes that include microcephaly, developmental delay, and brittle hair and nails. Each affected person carries bi-allelic CARS variants: one individual is compound heterozygous for c.1138C>T (p.Gln380∗) and c.1022G>A (p.Arg341His), two related individuals are compound heterozygous for c.1076C>T (p.Ser359Leu) and c.1199T>A (p.Leu400Gln), and one individual is homozygous for c.2061dup (p.Ser688Glnfs∗2). Measurement of protein abundance, yeast complementation assays, and assessments of tRNA charging indicate that each CARS variant causes a loss-of-function effect. Compared to subjects with previously reported ARS-related diseases, individuals with bi-allelic CARS variants are unique in presenting with a brittle-hair-and-nail phenotype, which most likely reflects the high cysteine content in human keratins. In sum, our efforts implicate CARS variants in human inherited disease, expand the locus and clinical heterogeneity of ARS-related clinical phenotypes, and further support impaired tRNA charging as the primary mechanism of recessive ARS-related disease.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Enfermedad de Charcot-Marie-Tooth/etiología , Discapacidades del Desarrollo/etiología , Enfermedades del Cabello/etiología , Microcefalia/etiología , Mutación , Enfermedades de la Uña/etiología , Adulto , Secuencia de Aminoácidos , Enfermedad de Charcot-Marie-Tooth/enzimología , Enfermedad de Charcot-Marie-Tooth/patología , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/patología , Femenino , Genes Recesivos , Predisposición Genética a la Enfermedad , Enfermedades del Cabello/enzimología , Enfermedades del Cabello/patología , Humanos , Masculino , Microcefalia/enzimología , Microcefalia/patología , Enfermedades de la Uña/enzimología , Enfermedades de la Uña/patología , Linaje , Fenotipo , Pronóstico , Homología de Secuencia , Adulto Joven
2.
Neurol Genet ; 10(3): e200161, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831911

RESUMEN

Objectives: The causes of intellectual disability (ID) are varied, with as many as 1,400 causative genes. We attempted to identify the causative gene in a patient with long-standing undiagnosed ID. Methods: Although this was an isolated case with no family history, we searched for the causative gene using trio-based whole-exome sequencing (trio-WES), because severe ID is often caused by genetic variations, and inherited metabolic disorders (IMDs) are assumed to be the cause when regression and epilepsy occur. Results: We identified homozygous donor splice-site variants in the AGA gene (aspartylglucosaminidase; NM_000027.4) Chr4(GRCh38):g. 177436275C>A, c.698+1G>T. This gene is implicated in aspartylglucosaminuria (AGU; OMIM #208400) and originated from both of the patient's parents. We confirmed the pathogenicity of the variant by detecting the splicing defect in cDNA from the patient's blood and accumulation of aberrant metabolites in the patient's urine. Discussion: We discuss how to more readily achieve an accurate diagnosis for patients with undiagnosed intellectual disabilities. Medical practitioners' awareness of the characteristics of the disease leading to clinical suspicion in patients with matching presentations, and the performance of newborn screening when possible, is important for the diagnosis of ID. In addition, the characteristic symptoms and course of the disease give rise to suspicion of IMDs. Given our results, we consider trio-WES to be a powerful method for identifying the causative genes in cases of ID with genetic causes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA