Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 163(3): 759-71, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26422227

RESUMEN

The microbial adaptive immune system CRISPR mediates defense against foreign genetic elements through two classes of RNA-guided nuclease effectors. Class 1 effectors utilize multi-protein complexes, whereas class 2 effectors rely on single-component effector proteins such as the well-characterized Cas9. Here, we report characterization of Cpf1, a putative class 2 CRISPR effector. We demonstrate that Cpf1 mediates robust DNA interference with features distinct from Cas9. Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif. Moreover, Cpf1 cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpf1-family proteins, we identified two candidate enzymes from Acidaminococcus and Lachnospiraceae, with efficient genome-editing activity in human cells. Identifying this mechanism of interference broadens our understanding of CRISPR-Cas systems and advances their genome editing applications.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/genética , Francisella/genética , Ingeniería Genética/métodos , Secuencia de Aminoácidos , Endonucleasas/química , Francisella/enzimología , Células HEK293 , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Guía de Kinetoplastida/genética , Alineación de Secuencia
2.
Mol Cell ; 82(23): 4405-4406, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459983

RESUMEN

In this issue, Liu et al. present an in-depth study aiming to unravel the structural, biochemical, and physiological aspects of how type III-E CRISPR-Cas systems trigger abortive infection by activating a protease upon target RNA recognition.1.


Asunto(s)
Sistemas CRISPR-Cas , Endopeptidasas , Péptido Hidrolasas , ARN , Biología
3.
Mol Cell ; 82(23): 4487-4502.e7, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427491

RESUMEN

CRISPR-Cas are prokaryotic adaptive immune systems. Cas nucleases generally use CRISPR-derived RNA guides to specifically bind and cleave DNA or RNA targets. Here, we describe the experimental characterization of a bacterial CRISPR effector protein Cas12m representing subtype V-M. Despite being less than half the size of Cas12a, Cas12m catalyzes auto-processing of a crRNA guide, recognizes a 5'-TTN' protospacer-adjacent motif (PAM), and stably binds a guide-complementary double-stranded DNA (dsDNA). Cas12m has a RuvC domain with a non-canonical catalytic site and accordingly is incapable of guide-dependent cleavage of target nucleic acids. Despite lacking target cleavage activity, the high binding affinity of Cas12m to dsDNA targets allows for interference as demonstrated by its ability to protect bacteria against invading plasmids through silencing invader transcription and/or replication. Based on these molecular features, we repurposed Cas12m by fusing it to a cytidine deaminase that resulted in base editing within a distinct window.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/genética , Plásmidos , ARN , ARN Guía de Kinetoplastida/metabolismo
4.
Nature ; 616(7956): 390-397, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020030

RESUMEN

The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins1. Recent studies have identified TnpB proteins as miniature RNA-guided DNA endonucleases2,3. TnpB associates with a single, long RNA (ωRNA) and cleaves double-stranded DNA targets complementary to the ωRNA guide. However, the RNA-guided DNA cleavage mechanism of TnpB and its evolutionary relationship with Cas12 enzymes remain unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of Deinococcus radiodurans ISDra2 TnpB in complex with its cognate ωRNA and target DNA. In the structure, the ωRNA adopts an unexpected architecture and forms a pseudoknot, which is conserved among all guide RNAs of Cas12 enzymes. Furthermore, the structure, along with our functional analysis, reveals how the compact TnpB recognizes the ωRNA and cleaves target DNA complementary to the guide. A structural comparison of TnpB with Cas12 enzymes suggests that CRISPR-Cas12 effectors acquired an ability to recognize the protospacer-adjacent motif-distal end of the guide RNA-target DNA heteroduplex, by either asymmetric dimer formation or diverse REC2 insertions, enabling engagement in CRISPR-Cas adaptive immunity. Collectively, our findings provide mechanistic insights into TnpB function and advance our understanding of the evolution from transposon-encoded TnpB proteins to CRISPR-Cas12 effectors.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Elementos Transponibles de ADN , Deinococcus , Endodesoxirribonucleasas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Elementos Transponibles de ADN/genética , ARN Guía de Sistemas CRISPR-Cas/química , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/ultraestructura , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/ultraestructura , Deinococcus/enzimología , Deinococcus/genética , Especificidad por Sustrato
5.
Mol Cell ; 80(2): 193-209, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33010203

RESUMEN

Understanding the genetic design principles that determine protein production remains a major challenge. Although the key principles of gene expression were discovered 50 years ago, additional factors are still being uncovered. Both protein-coding and non-coding sequences harbor elements that collectively influence the efficiency of protein production by modulating transcription, mRNA decay, and translation. The influences of many contributing elements are intertwined, which complicates a full understanding of the individual factors. In natural genes, a functional balance between these factors has been obtained in the course of evolution, whereas for genetic-engineering projects, our incomplete understanding still limits optimal design of synthetic genes. However, notable advances have recently been made, supported by high-throughput analysis of synthetic gene libraries as well as by state-of-the-art biomolecular techniques. We discuss here how these advances further strengthen understanding of the gene expression process and how they can be harnessed to optimize protein production.


Asunto(s)
Código Genético , Biosíntesis de Proteínas/genética , Algoritmos , Animales , Biotecnología , Humanos , Estabilidad del ARN , Transcripción Genética
6.
Mol Cell ; 66(2): 221-233.e4, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431230

RESUMEN

The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both activities, we determined crystal structures of Francisella novicida Cas12a bound to guide RNA and in complex with an R-loop formed by a non-cleavable guide RNA precursor and a full-length target DNA. Corroborated by biochemical experiments, these structures reveal the mechanisms of guide RNA processing and pre-ordering of the seed sequence in the guide RNA that primes Cas12a for target DNA binding. Furthermore, the R-loop complex structure reveals the strand displacement mechanism that facilitates guide-target hybridization and suggests a mechanism for double-stranded DNA cleavage involving a single active site. Together, these insights advance our mechanistic understanding of Cas12a enzymes and may contribute to further development of genome editing technologies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/metabolismo , Endonucleasas/metabolismo , Francisella/enzimología , Edición Génica/métodos , Precursores del ARN/metabolismo , ARN Bacteriano/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Catálisis , ADN Bacteriano/química , ADN Bacteriano/genética , Endonucleasas/química , Endonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Francisella/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Precursores del ARN/química , Precursores del ARN/genética , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad
7.
Mol Cell ; 65(6): 985-998.e6, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28262506

RESUMEN

Several prokaryotic Argonaute proteins (pAgos) utilize small DNA guides to mediate host defense by targeting invading DNA complementary to the DNA guide. It is unknown how these DNA guides are being generated and loaded onto pAgo. Here, we demonstrate that guide-free Argonaute from Thermus thermophilus (TtAgo) can degrade double-stranded DNA (dsDNA), thereby generating small dsDNA fragments that subsequently are loaded onto TtAgo. Combining single-molecule fluorescence, molecular dynamic simulations, and structural studies, we show that TtAgo loads dsDNA molecules with a preference toward a deoxyguanosine on the passenger strand at the position opposite to the 5' end of the guide strand. This explains why in vivo TtAgo is preferentially loaded with guides with a 5' end deoxycytidine. Our data demonstrate that TtAgo can independently generate and selectively load functional DNA guides.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas Bacterianas/metabolismo , ADN sin Sentido/metabolismo , ADN Bacteriano/metabolismo , Thermus thermophilus/enzimología , Proteínas Argonautas/química , Proteínas Argonautas/genética , Proteínas Bacterianas/genética , Sitios de Unión , ADN sin Sentido/química , ADN sin Sentido/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Desoxicitidina/metabolismo , Desoxiguanosina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula , Relación Estructura-Actividad , Thermus thermophilus/genética
8.
Nucleic Acids Res ; 51(5): 2363-2376, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36718935

RESUMEN

It has been known for decades that codon usage contributes to translation efficiency and hence to protein production levels. However, its role in protein synthesis is still only partly understood. This lack of understanding hampers the design of synthetic genes for efficient protein production. In this study, we generated a synonymous codon-randomized library of the complete coding sequence of red fluorescent protein. Protein production levels and the full coding sequences were determined for 1459 gene variants in Escherichia coli. Using different machine learning approaches, these data were used to reveal correlations between codon usage and protein production. Interestingly, protein production levels can be relatively accurately predicted (Pearson correlation of 0.762) by a Random Forest model that only relies on the sequence information of the first eight codons. In this region, close to the translation initiation site, mRNA secondary structure rather than Codon Adaptation Index (CAI) is the key determinant of protein production. This study clearly demonstrates the key role of codons at the start of the coding sequence. Furthermore, these results imply that commonly used CAI-based codon optimization of the full coding sequence is not a very effective strategy. One should rather focus on optimizing protein production via reducing mRNA secondary structure formation with the first few codons.


Asunto(s)
Escherichia coli , Aprendizaje Automático , Distribución Aleatoria , Codón/genética , Codón/metabolismo , ARN Mensajero/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biosíntesis de Proteínas
9.
Cell ; 139(5): 863-5, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19945373

RESUMEN

The small CRISPR-derived RNAs of bacteria and archaea provide adaptive immunity by targeting the DNA of invading viruses and plasmids. Hale et al. (2009) now report on a new variant CRISPR/Cas complex in the archaeon Pyrococcus furiosus that uses guide RNAs to specifically target and cleave RNA not DNA.


Asunto(s)
Pyrococcus furiosus/genética , Pyrococcus furiosus/inmunología , Interferencia de ARN , ARN de Archaea/inmunología , Pyrococcus furiosus/virología , ARN de Archaea/genética , ARN Viral/inmunología , ARN Pequeño no Traducido
10.
Nucleic Acids Res ; 50(14): 8377-8391, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35822842

RESUMEN

The RNA programmed non-specific (trans) nuclease activity of CRISPR-Cas Type V and VI systems has opened a new era in the field of nucleic acid-based detection. Here, we report on the enhancement of trans-cleavage activity of Cas12a enzymes using hairpin DNA sequences as FRET-based reporters. We discover faster rate of trans-cleavage activity of Cas12a due to its improved affinity (Km) for hairpin DNA structures, and provide mechanistic insights of our findings through Molecular Dynamics simulations. Using hairpin DNA probes we significantly enhance FRET-based signal transduction compared to the widely used linear single stranded DNA reporters. Our signal transduction enables faster detection of clinically relevant double stranded DNA targets with improved sensitivity and specificity either in the presence or in the absence of an upstream pre-amplification step.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/genética , División del ADN , ADN de Cadena Simple/genética
11.
Mol Cell ; 59(2): 149-61, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26186290

RESUMEN

The redundancy of the genetic code implies that most amino acids are encoded by multiple synonymous codons. In all domains of life, a biased frequency of synonymous codons is observed at the genome level, in functionally related genes (e.g., in operons), and within single genes. Other codon bias variants include biased codon pairs and codon co-occurrence. Although translation initiation is the key step in protein synthesis, it is generally accepted that codon bias contributes to translation efficiency by tuning the elongation rate of the process. Moreover, codon bias plays an important role in controlling a multitude of cellular processes, ranging from differential protein production to protein folding. Here we review currently known types of codon bias and how they may influence translation. We discuss how understanding the principles of codon bias and translation can contribute to improved protein production and developments in synthetic biology.


Asunto(s)
Codón/genética , Expresión Génica , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Genes Sintéticos , Código Genético , Variación Genética , Humanos , Operón , Biosíntesis de Proteínas , Pliegue de Proteína , ARN de Transferencia/genética , Selección Genética
12.
Nucleic Acids Res ; 49(19): 11392-11404, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34614191

RESUMEN

CRISPR-Cas is a powerful tool for genome editing in bacteria. However, its efficacy is dependent on host factors (such as DNA repair pathways) and/or exogenous expression of recombinases. In this study, we mitigated these constraints by developing a simple and widely applicable genome engineering tool for bacteria which we termed SIBR-Cas (Self-splicing Intron-Based Riboswitch-Cas). SIBR-Cas was generated from a mutant library of the theophylline-dependent self-splicing T4 td intron that allows for tight and inducible control over CRISPR-Cas counter-selection. This control delays CRISPR-Cas counter-selection, granting more time for the editing event (e.g. by homologous recombination) to occur. Without the use of exogenous recombinases, SIBR-Cas was successfully applied to knock-out several genes in three wild-type bacteria species (Escherichia coli MG1655, Pseudomonas putida KT2440 and Flavobacterium IR1) with poor homologous recombination systems. Compared to other genome engineering tools, SIBR-Cas is simple, tightly regulated and widely applicable for most (non-model) bacteria. Furthermore, we propose that SIBR can have a wider application as a simple gene expression and gene regulation control mechanism for any gene or RNA of interest in bacteria.


Asunto(s)
Escherichia coli/genética , Flavobacterium/genética , Edición Génica/métodos , Genoma Bacteriano , Pseudomonas putida/genética , ARN Bacteriano/genética , Emparejamiento Base , Secuencia de Bases , Sistemas CRISPR-Cas , Escherichia coli/metabolismo , Flavobacterium/metabolismo , Técnicas de Inactivación de Genes/métodos , Recombinación Homóloga , Intrones , Conformación de Ácido Nucleico , Pseudomonas putida/metabolismo , Empalme del ARN , ARN Bacteriano/metabolismo , Riboswitch
13.
Microb Cell Fact ; 21(1): 243, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36419165

RESUMEN

BACKGROUND: Ethyl acetate is a bulk chemical traditionally produced via energy intensive chemical esterification. Microbial production of this compound offers promise as a more sustainable alternative process. So far, efforts have focused on using sugar-based feedstocks for microbial ester production, but extension to one-carbon substrates, such as CO and CO2/H2, is desirable. Acetogens present a promising microbial platform for the production of ethyl esters from these one-carbon substrates. RESULTS: We engineered the acetogen C. autoethanogenum to produce ethyl acetate from CO by heterologous expression of an alcohol acetyltransferase (AAT), which catalyzes the formation of ethyl acetate from acetyl-CoA and ethanol. Two AATs, Eat1 from Kluyveromyces marxianus and Atf1 from Saccharomyces cerevisiae, were expressed in C. autoethanogenum. Strains expressing Atf1 produced up to 0.2 mM ethyl acetate. Ethyl acetate production was barely detectable (< 0.01 mM) for strains expressing Eat1. Supplementation of ethanol was investigated as potential boost for ethyl acetate production but resulted only in a 1.5-fold increase (0.3 mM ethyl acetate). Besides ethyl acetate, C. autoethanogenum expressing Atf1 could produce 4.5 mM of butyl acetate when 20 mM butanol was supplemented to the growth medium. CONCLUSIONS: This work offers for the first time a proof-of-principle that autotrophic short chain ester production from C1-carbon feedstocks is possible and offers leads on how this approach can be optimized in the future.


Asunto(s)
Etanol , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Ésteres , Carbono
15.
Mol Cell ; 56(4): 518-30, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25457165

RESUMEN

CRISPR-Cas is a prokaryotic adaptive immune system that provides sequence-specific defense against foreign nucleic acids. Here we report the structure and function of the effector complex of the Type III-A CRISPR-Cas system of Thermus thermophilus: the Csm complex (TtCsm). TtCsm is composed of five different protein subunits (Csm1-Csm5) with an uneven stoichiometry and a single crRNA of variable size (35-53 nt). The TtCsm crRNA content is similar to the Type III-B Cmr complex, indicating that crRNAs are shared among different subtypes. A negative stain EM structure of the TtCsm complex exhibits the characteristic architecture of Type I and Type III CRISPR-associated ribonucleoprotein complexes. crRNA-protein crosslinking studies show extensive contacts between the Csm3 backbone and the bound crRNA. We show that, like TtCmr, TtCsm cleaves complementary target RNAs at multiple sites. Unlike Type I complexes, interference by TtCsm does not proceed via initial base pairing by a seed sequence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , División del ARN , Thermus thermophilus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/ultraestructura , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Endorribonucleasas/ultraestructura , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Thermus thermophilus/enzimología
16.
Nucleic Acids Res ; 48(6): 3228-3243, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31989168

RESUMEN

Genome editing has recently made a revolutionary development with the introduction of the CRISPR-Cas technology. The programmable CRISPR-associated Cas9 and Cas12a nucleases generate specific dsDNA breaks in the genome, after which host DNA-repair mechanisms can be manipulated to implement the desired editing. Despite this spectacular progress, the efficiency of Cas9/Cas12a-based engineering can still be improved. Here, we address the variation in guide-dependent efficiency of Cas12a, and set out to reveal the molecular basis of this phenomenon. We established a sensitive and robust in vivo targeting assay based on loss of a target plasmid encoding the red fluorescent protein (mRFP). Our results suggest that folding of both the precursor guide (pre-crRNA) and the mature guide (crRNA) have a major influence on Cas12a activity. Especially, base pairing of the direct repeat, other than with itself, was found to be detrimental to the activity of Cas12a. Furthermore, we describe different approaches to minimize base-pairing interactions between the direct repeat and the variable part of the guide. We show that design of the 3' end of the guide, which is not involved in target strand base pairing, may result in substantial improvement of the guide's targeting potential and hence of its genome editing efficiency.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Reparación del ADN/genética , Endodesoxirribonucleasas/genética , Edición Génica , Proteína 9 Asociada a CRISPR/genética , Escherichia coli/genética , Proteínas Luminiscentes/genética , Plásmidos/genética , ARN Guía de Kinetoplastida/genética
17.
Nucleic Acids Res ; 48(4): e19, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31828328

RESUMEN

Detection of disease-associated, cell-free nucleic acids in body fluids enables early diagnostics, genotyping and personalized therapy, but is challenged by the low concentrations of clinically significant nucleic acids and their sequence homology with abundant wild-type nucleic acids. We describe a novel approach, dubbed NAVIGATER, for increasing the fractions of Nucleic Acids of clinical interest Via DNA-Guided Argonaute from Thermus thermophilus (TtAgo). TtAgo cleaves specifically guide-complementary DNA and RNA with single nucleotide precision, greatly increasing the fractions of rare alleles and, enhancing the sensitivity of downstream detection methods such as ddPCR, sequencing, and clamped enzymatic amplification. We demonstrated 60-fold enrichment of the cancer biomarker KRAS G12D and ∼100-fold increased sensitivity of Peptide Nucleic Acid (PNA) and Xenonucleic Acid (XNA) clamp PCR, enabling detection of low-frequency (<0.01%) mutant alleles (∼1 copy) in blood samples of pancreatic cancer patients. NAVIGATER surpasses Cas9-based assays (e.g. DASH, Depletion of Abundant Sequences by Hybridization), identifying more mutation-positive samples when combined with XNA-PCR. Moreover, TtAgo does not require targets to contain any specific protospacer-adjacent motifs (PAM); is a multi-turnover enzyme; cleaves ssDNA, dsDNA and RNA targets in a single assay; and operates at elevated temperatures, providing high selectivity and compatibility with polymerases.


Asunto(s)
Proteínas Argonautas/genética , Ácidos Nucleicos Libres de Células/genética , Neoplasias/genética , Ácidos Nucleicos de Péptidos/genética , Alelos , Humanos , Mutación/genética , Neoplasias/diagnóstico , Neoplasias/patología , Ácidos Nucleicos de Péptidos/aislamiento & purificación , Thermus thermophilus/genética
18.
Metab Eng ; 66: 239-258, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33971293

RESUMEN

The microalga Nannochloropsis oceanica is considered a promising platform for the sustainable production of high-value lipids and biofuel feedstocks. However, current lipid yields of N. oceanica are too low for economic feasibility. Gaining fundamental insights into the lipid metabolism of N. oceanica could open up various possibilities for the optimization of this species through genetic engineering. Therefore, the aim of this study was to discover novel genes associated with an elevated neutral lipid content. We constructed an insertional mutagenesis library of N. oceanica, selected high lipid mutants by five rounds of fluorescence-activated cell sorting, and identified disrupted genes using a novel implementation of a rapid genotyping procedure. One particularly promising mutant (HLM23) was disrupted in a putative APETALA2-like transcription factor gene. HLM23 showed a 40%-increased neutral lipid content, increased photosynthetic performance, and no growth impairment. Furthermore, transcriptome analysis revealed an upregulation of genes related to plastidial fatty acid biosynthesis, glycolysis and the Calvin-Benson-Bassham cycle in HLM23. Insights gained in this work can be used in future genetic engineering strategies for increased lipid productivity of Nannochloropsis.


Asunto(s)
Microalgas , Estramenopilos , Biocombustibles , Lípidos/genética , Microalgas/genética , Mutagénesis Insercional , Estramenopilos/genética
19.
Methods ; 172: 27-31, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31726224

RESUMEN

Quantifying DNA cleavage by CRISPR-Cas nucleases is usually done by separating the cleaved products from the non-cleaved target by agarose gel electrophoresis. We devised a method that eliminates the quantification from band intensity on agarose gel, and uses a target with a fluorescent dye on the one end and a biotin on the other. Cleavage of the target will separate the dye from the biotin, and cause the dye to stay in solution when streptavidin beads are introduced. All non-cleaved target will be eliminated from solution and no longer contribute to detectable fluorescence. Cleavage will therefore increase the fluorescent signal. A control, which has no streptavidin treatment, is taken along to correct for any errors that might have been introduced by pipetting, inactivation of the fluorescent dye or release of the biotin during several steps of the procedure. With this method we were able to quantify the fraction of active Cas12a in a purification sample and assess the cleavage rate.


Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas Biosensibles/métodos , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , ADN/aislamiento & purificación , Endodesoxirribonucleasas/metabolismo , Colorantes Fluorescentes/química , Técnicas Biosensibles/instrumentación , Biotina/química , Biotina/metabolismo , ADN/metabolismo , División del ADN , Francisella/enzimología , ARN Guía de Kinetoplastida/genética , Estreptavidina/metabolismo
20.
Methods ; 172: 51-60, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31362039

RESUMEN

Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol (ABE) or an Isopropanol/Butanol/Ethanol (IBE) mix of solvents. In the NCIMB 8052 ABE-producing strain, inactivation of the SpoIIE sporulation factor encoding gene resulted in sporulation-deficient mutants, and this phenotype was reverted by complementing the mutant strain with a functional spoIIE gene. Furthermore, the fungal cellulase-encoding celA gene was inserted into the C. beijerinckii NCIMB 8052 chromosome, resulting in mutants with endoglucanase activity. A similar two-plasmid approach was next used to edit the genome of the natural IBE-producing strain C. beijerinckii DSM 6423, which has never been genetically engineered before. Firstly, the catB gene conferring thiamphenicol resistance was deleted to make this strain compatible with our dual-plasmid editing system. As a proof of concept, our dual-plasmid system was then used in C. beijerinckii DSM 6423 ΔcatB to remove the endogenous pNF2 plasmid, which led to a sharp increase of transformation efficiencies.


Asunto(s)
Sistemas CRISPR-Cas/genética , Clostridium beijerinckii/genética , Ingeniería Metabólica/métodos , Plásmidos/genética , 2-Propanol/metabolismo , Butanoles/metabolismo , Celulasa/genética , Celulasa/metabolismo , Celulosa/metabolismo , Clostridium beijerinckii/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edición Génica/métodos , Genoma Bacteriano/genética , Microbiología Industrial/métodos , Mutación , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Transformación Bacteriana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA