Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1777(9): 1122-8, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18513489

RESUMEN

Photosynthetic supercomplexes from the cryptophyte Rhodomonas CS24 were isolated by a short detergent treatment of membranes from the cryptophyte Rhodomonas CS24 and studied by electron microscopy and low-temperature absorption and fluorescence spectroscopy. At least three different types of supercomplexes of photosystem I (PSI) monomers and peripheral Chl a/c(2) proteins were found. The most common complexes have Chl a/c(2) complexes at both sides of the PSI core monomer and have dimensions of about 17x24 nm. The peripheral antenna in these supercomplexes shows no obvious similarities in size and/or shape with that of the PSI-LHCI supercomplexes from the green plant Arabidopsis thaliana and the green alga Chlamydomonas reinhardtii, and may be comprised of about 6-8 monomers of Chl a/c(2) light-harvesting complexes. In addition, two different types of supercomplexes of photosystem II (PSII) dimers and peripheral Chl a/c(2) proteins were found. The detected complexes consist of a PSII core dimer and three or four monomeric Chl a/c(2) proteins on one side of the PSII core at positions that in the largest complex are similar to those of Lhcb5, a monomer of the S-trimer of LHCII, Lhcb4 and Lhcb6 in green plants.


Asunto(s)
Clorofila/metabolismo , Criptófitas/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila A , Cromatografía en Gel , Dimerización , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Microscopía Electrónica , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/ultraestructura , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/ultraestructura , Análisis Espectral , Temperatura
2.
Biophys J ; 94(6): 2423-33, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18024506

RESUMEN

This article presents an investigation of the energy migration dynamics in intact cells of the unicellular photosynthetic cryptophyte Chroomonas CCMP270 by steady-state and time-resolved fluorescence measurements. By kinetic modeling of the fluorescence data on chlorophyll and phycocyanin 645 excitation (at 400 and 582 nm respectively), it has been possible to show the excited state energy distribution in the photosynthetic antenna of this alga. Excitation energy from phycocyanin 645 is distributed nearly equally between photosystem I and photosystem II with very high efficiency on a 100-ps timescale. The excitation energy trapping times for both photosystem I ( approximately 30 ps) and photosystem I (200 and approximately 540 ps) correspond well to those obtained from experiments on isolated photosystems. The results are compared with previous results for another cryptophyte species, Rhodomonas CS24, and suggest a similar membrane organization for the cryptophytes with the phycobiliproteins tightly packed in the thylakoid lumen around the periphery of the photosystems.


Asunto(s)
Eucariontes/metabolismo , Eucariontes/fisiología , Complejo de Proteína del Fotosistema I/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Ficocianina/química , Animales , Línea Celular , Criptófitas/química , Interpretación Estadística de Datos , Procesamiento de Imagen Asistido por Computador , Cinética , Luz , Complejos de Proteína Captadores de Luz , Microscopía Fluorescente/métodos , Fotofosforilación , Fotosíntesis , Ficobilisomas
3.
Biophys J ; 94(2): 640-7, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17827217

RESUMEN

Folding, curvature, and domain formation are characteristics of many biological membranes. Yet the mechanisms that drive both curvature and the formation of specialized domains enriched in particular protein complexes are unknown. For this reason, studies in membranes whose shape and organization are known under physiological conditions are of great value. We therefore conducted atomic force microscopy and polarized spectroscopy experiments on membranes of the photosynthetic bacterium Rhodobacter sphaeroides. These membranes are densely populated with peripheral light harvesting (LH2) complexes, physically and functionally connected to dimeric reaction center-light harvesting (RC-LH1-PufX) complexes. Here, we show that even when converting the dimeric RC-LH1-PufX complex into RC-LH1 monomers by deleting the gene encoding PufX, both the appearance of protein domains and the associated membrane curvature are retained. This suggests that a general mechanism may govern membrane organization and shape. Monte Carlo simulations of a membrane model accounting for crowding and protein geometry alone confirm that these features are sufficient to induce domain formation and membrane curvature. Our results suggest that coexisting ordered and fluid domains of like proteins can arise solely from asymmetries in protein size and shape, without the need to invoke specific interactions. Functionally, coexisting domains of different fluidity are of enormous importance to allow for diffusive processes to occur in crowded conditions.


Asunto(s)
Proteínas Bacterianas/química , Membrana Celular/química , Rhodobacter sphaeroides/química , Proteínas Bacterianas/ultraestructura , Membrana Celular/ultraestructura , Simulación por Computador , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/ultraestructura , Microscopía de Fuerza Atómica , Método de Montecarlo , Estructura Terciaria de Proteína , Rhodobacter sphaeroides/ultraestructura , Espectrofotometría Infrarroja , Temperatura
4.
Biochim Biophys Acta ; 1767(12): 1393-400, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17980697

RESUMEN

Cyanobacteria respond to iron deficiency during growth by expressing the isiA gene, which produces a chlorophyll-carotenoid protein complex known as IsiA or CP43'. Long-term iron deficiency results in the formation of large IsiA aggregates, some of which associate with photosystem I (PSI) while others are not connected to a photosystem. The fluorescence at room temperature of these unconnected aggregates is strongly quenched, which points to a photoprotective function. In this study, we report time-resolved fluorescence measurements of IsiA aggregates at low temperatures. The average fluorescence lifetimes are estimated to be about 600 ps at 5 K and 150 ps at 80 K. Both lifetimes are much shorter than that of the monomeric complex CP47 at 77 K. We conclude that IsiA aggregates quench fluorescence to a significant extent at cryogenic temperatures. We show by low-temperature fluorescence spectroscopy that unconnected IsiA is present already after two days of growth in an iron-deficient medium, when PSI and PSII are still present in significant amounts and that under these conditions the fluorescence quenching is similar to that after 18 days, when PSI is almost completely absent. We conclude that unconnected IsiA provides photoprotection in all stages of iron deficiency.


Asunto(s)
Proteínas Bacterianas/metabolismo , Frío , Fluorescencia , Deficiencias de Hierro , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Espectrometría de Fluorescencia , Synechocystis/metabolismo
5.
J Phys Chem B ; 110(49): 25066-73, 2006 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-17149931

RESUMEN

We report an investigation of energy migration dynamics in intact cells of the photosynthetic cryptophyte Rhodomonas CS24 using analyses of steady-state and time-resolved fluorescence anisotropy measurements. By fitting a specific model to the fluorescence data, we obtain three time scales (17, 58, and 113 ps) by which the energy is transferred from phycoerythrin 545 (PE545) to the membrane-associated chlorophylls (Chls). We propose that these time scales reflect both an angular distribution of PE545 around the photosystems and the relative orientations of the donor dihydrobiliverdin (DBV) bilin and the acceptor Chl. Contrary to investigations of the isolated antenna complex, it is demonstrated that energy transfer from PE545 does not occur from a single-emitting bilin, but rather both the peripheral dihydrobiliverdin (DBV) chromophores in PE545 appear to be viable donors of excitation energy to the membrane-bound proteins. The model shows an almost equal distribution of excitation energy from PE545 to both photosystem I (PSI) and photosystem II (PSII), whose trap times correspond well to those obtained from experiments on isolated photosystems.


Asunto(s)
Criptófitas/química , Fotofosforilación/fisiología , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química , Ficoeritrina/química , Criptófitas/metabolismo , Modelos Moleculares , Ficoeritrina/metabolismo
6.
J Phys Chem B ; 117(38): 11176-83, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23834405

RESUMEN

We report for the first time steady-state and time-resolved emission properties of photosystem I (PSI) complexes isolated from the cyanobacterial strain Synechococcus WH 7803. The PSI complexes from this strain display an extremely small fluorescence emission yield at 77 K, which we attribute to the absence of so-called red antenna chlorophylls, chlorophylls with absorption maxima at wavelengths longer than those of the primary electron donor P700. Emission measurements at room temperature with picosecond time resolution resulted in two main decay components with lifetimes of about 7.5 and 18 ps and spectra peaking at about 685 nm. Especially in the red flanks, these spectra show consistent differences, which means that earlier proposed models for the primary charge separation reactions based on ultrafast (∼1 ps) excitation equilibration processes cannot describe the data. We show target analyses of a number of alternative models and conclude that a simple model (Ant2)* ↔ (Ant1/RC)* → RP2 can explain the time-resolved emission data very well. In this model, (Ant2)* represents chlorophylls that spectrally equilibrate in about 7.5 ps and in which RP2 represents the "final" radical pair P700(+)A0(-). Adding an equilibrium (Ant1/RC)* ↔ RP1, in which RP1 represents an "intermediate" radical pair A(+)A0(-), resulted in the same fit quality. We show that the simple model without RP1 can easily be extended to PSI complexes from cyanobacteria with one or more pools of red antenna chlorophylls and also that the model provides a straightforward explanation of steady-state emission properties observed at cryogenic temperatures.


Asunto(s)
Proteínas Bacterianas/química , Complejo de Proteína del Fotosistema I/química , Synechococcus/metabolismo , Proteínas Bacterianas/metabolismo , Clorofila/química , Electrones , Transferencia de Energía , Complejo de Proteína del Fotosistema I/metabolismo , Espectrometría de Fluorescencia , Temperatura , Tilacoides/metabolismo , Factores de Tiempo
7.
Biophys J ; 91(10): 3776-86, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16861268

RESUMEN

We have performed time-resolved fluorescence measurements on photosystem II (PSII) containing membranes (BBY particles) from spinach with open reaction centers. The decay kinetics can be fitted with two main decay components with an average decay time of 150 ps. Comparison with recent kinetic exciton annihilation data on the major light-harvesting complex of PSII (LHCII) suggests that excitation diffusion within the antenna contributes significantly to the overall charge separation time in PSII, which disagrees with previously proposed trap-limited models. To establish to which extent excitation diffusion contributes to the overall charge separation time, we propose a simple coarse-grained method, based on the supramolecular organization of PSII and LHCII in grana membranes, to model the energy migration and charge separation processes in PSII simultaneously in a transparent way. All simulations have in common that the charge separation is fast and nearly irreversible, corresponding to a significant drop in free energy upon primary charge separation, and that in PSII membranes energy migration imposes a larger kinetic barrier for the overall process than primary charge separation.


Asunto(s)
Membrana Celular/química , Membrana Celular/fisiología , Transferencia de Energía/fisiología , Modelos Biológicos , Modelos Químicos , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/fisiología , Membrana Celular/efectos de la radiación , Simulación por Computador , Transferencia de Energía/efectos de los fármacos , Luz , Modelos Moleculares , Complejo de Proteína del Fotosistema II/efectos de la radiación , Spinacia oleracea/química , Spinacia oleracea/fisiología , Spinacia oleracea/efectos de la radiación , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA