Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 577(7790): 341-345, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942054

RESUMEN

Classification is an important task at which both biological and artificial neural networks excel1,2. In machine learning, nonlinear projection into a high-dimensional feature space can make data linearly separable3,4, simplifying the classification of complex features. Such nonlinear projections are computationally expensive in conventional computers. A promising approach is to exploit physical materials systems that perform this nonlinear projection intrinsically, because of their high computational density5, inherent parallelism and energy efficiency6,7. However, existing approaches either rely on the systems' time dynamics, which requires sequential data processing and therefore hinders parallel computation5,6,8, or employ large materials systems that are difficult to scale up7. Here we use a parallel, nanoscale approach inspired by filters in the brain1 and artificial neural networks2 to perform nonlinear classification and feature extraction. We exploit the nonlinearity of hopping conduction9-11 through an electrically tunable network of boron dopant atoms in silicon, reconfiguring the network through artificial evolution to realize different computational functions. We first solve the canonical two-input binary classification problem, realizing all Boolean logic gates12 up to room temperature, demonstrating nonlinear classification with the nanomaterial system. We then evolve our dopant network to realize feature filters2 that can perform four-input binary classification on the Modified National Institute of Standards and Technology handwritten digit database. Implementation of our material-based filters substantially improves the classification accuracy over that of a linear classifier directly applied to the original data13. Our results establish a paradigm of silicon-based electronics for small-footprint and energy-efficient computation14.

2.
Nano Lett ; 20(2): 820-828, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31536360

RESUMEN

Tumor-derived extracellular vesicles (tdEVs) are attracting much attention due to their essential function in intercellular communication and their potential as cancer biomarkers. Although tdEVs are significantly more abundant in blood than other cancer biomarkers, their concentration compared to other blood components remains relatively low. Moreover, the presence of particles in blood with a similar size as that of tdEVs makes their selective and sensitive detection further challenging. Therefore, highly sensitive and specific biosensors are required for unambiguous tdEV detection in complex biological environments, especially for decentralized point-of-care analysis. Here, we report an electrochemical sensing scheme for tdEV detection, with two-level selectivity provided by a sandwich immunoassay and two-level amplification through the combination of an enzymatic assay and redox cycling on nanointerdigitated electrodes to respectively enhance the specificity and sensitivity of the assay. Analysis of prostate cancer cell line tdEV samples at various concentrations revealed an estimated limit of detection for our assay as low as 5 tdEVs/µL, as well as an excellent linear sensor response spreading over 6 orders of magnitude (10-106 tdEVs/µL), which importantly covers the clinically relevant range for tdEV detection in blood. This novel nanosensor and associated sensing scheme opens new opportunities to detect tdEVs at clinically relevant concentrations from a single blood finger prick.


Asunto(s)
Biomarcadores de Tumor/aislamiento & purificación , Técnicas Biosensibles , Vesículas Extracelulares/química , Neoplasias/diagnóstico , Biomarcadores de Tumor/genética , Técnicas Electroquímicas , Electrodos , Vesículas Extracelulares/genética , Humanos , Inmunoensayo , Límite de Detección , Neoplasias/genética
3.
Nano Lett ; 20(1): 122-130, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31771328

RESUMEN

We show a hard superconducting gap in a Ge-Si nanowire Josephson transistor up to in-plane magnetic fields of 250 mT, an important step toward creating and detecting Majorana zero modes in this system. A hard gap requires a highly homogeneous tunneling heterointerface between the superconducting contacts and the semiconducting nanowire. This is realized by annealing devices at 180 °C during which aluminum interdiffuses and replaces the germanium in a section of the nanowire. Next to Al, we find a superconductor with lower critical temperature (TC = 0.9 K) and a higher critical field (BC = 0.9-1.2 T). We can therefore selectively switch either superconductor to the normal state by tuning the temperature and the magnetic field and observe that the additional superconductor induces a proximity supercurrent in the semiconducting part of the nanowire even when the Al is in the normal state. In another device where the diffusion of Al rendered the nanowire completely metallic, a superconductor with a much higher critical temperature (TC = 2.9 K) and critical field (BC = 3.4 T) is found. The small size of these diffusion-induced superconductors inside nanowires may be of special interest for applications requiring high magnetic fields in arbitrary direction.

4.
Phys Rev Lett ; 124(1): 017702, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31976734

RESUMEN

In LaAlO_{3}/SrTiO_{3} heterostructures, a still poorly understood phenomenon is that of electron trapping in back-gating experiments. Here, by combining magnetotransport measurements and self-consistent Schrödinger-Poisson calculations, we obtain an empirical relation between the amount of trapped electrons and the gate voltage. The amount of trapped electrons decays exponentially away from the interface. However, contrary to earlier observations, we find that the Fermi level remains well within the quantum well. The enhanced trapping of electrons induced by the gate voltage can therefore not be explained by a thermal escape mechanism. Further gate sweeping experiments strengthen that conclusion. We propose a new mechanism which involves the electromigration and clustering of oxygen vacancies in SrTiO_{3} and argue that such electron trapping is a universal phenomenon in SrTiO_{3}-based two-dimensional electron systems.

5.
Angew Chem Int Ed Engl ; 57(35): 11465-11469, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29952056

RESUMEN

Patterned monolayers of N-heterocyclic carbenes (NHCs) on gold surfaces were obtained by microcontact printing of NHC-CO2 adducts and NHC(H)[HCO3 ] salts. The NHC-modified areas showed an increased conductivity compared to unmodified gold surface areas. Furthermore, the remaining surface areas could be modified with a second, azide-functionalized carbene, facilitating further applications and post-printing modifications. Thorough elucidation by a variety of analytical methods offers comprehensive evidence for the viability of the methodology reported here. The protocol enables facile access to versatile, microstructured NHC-modified gold surfaces with highly stable patterns, enhanced conductivity, and the option for further modification.

6.
Langmuir ; 33(15): 3635-3638, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28351137

RESUMEN

Monolayer contact doping (MLCD) is a modification of the monolayer doping (MLD) technique that involves monolayer formation of a dopant-containing adsorbate on a source substrate. This source substrate is subsequently brought into contact with the target substrate, upon which the dopant is driven into the target substrate by thermal annealing. Here, we report a modified MLCD process, in which we replace the commonly used Si source substrate by a thermally oxidized substrate with a 100 nm thick silicon oxide layer, functionalized with a monolayer of a dopant-containing silane. The thermal oxide potentially provides a better capping effect and effectively prevents the dopants from diffusing back into the source substrate. The use of easily accessible and processable silane monolayers provides access to a general and modifiable process for the introduction of dopants on the source substrate. As a proof of concept, a boron-rich carboranyl-alkoxysilane was used here to construct the monolayer that delivers the dopant, to boost the doping level in the target substrate. X-ray photoelectron spectroscopy (XPS) showed a successful grafting of the dopant adsorbate onto the SiO2 surface. The achieved doping levels after thermal annealing were similar to the doping levels acessible by MLD as demonstrated by secondary ion mass spectrometry measurements. The method shows good prospects, e.g. for use in the doping of Si nanostructures.

7.
Nano Lett ; 15(8): 5336-41, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26134900

RESUMEN

We report electrical transport measurements on a gate-defined ambipolar quantum dot in intrinsic silicon. The ambipolarity allows its operation as either an electron or a hole quantum dot of which we change the dot occupancy by 20 charge carriers in each regime. Electron-hole confinement symmetry is evidenced by the extracted gate capacitances and charging energies. The results demonstrate that ambipolar quantum dots offer great potential for spin-based quantum information processing, since confined electrons and holes can be compared and manipulated in the same crystalline environment.

8.
Adv Sci (Weinh) ; 11(13): e2305277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279508

RESUMEN

The availability of an ever-expanding portfolio of 2D materials with rich internal degrees of freedom (spin, excitonic, valley, sublattice, and layer pseudospin) together with the unique ability to tailor heterostructures made layer by layer in a precisely chosen stacking sequence and relative crystallographic alignments, offers an unprecedented platform for realizing materials by design. However, the breadth of multi-dimensional parameter space and massive data sets involved is emblematic of complex, resource-intensive experimentation, which not only challenges the current state of the art but also renders exhaustive sampling untenable. To this end, machine learning, a very powerful data-driven approach and subset of artificial intelligence, is a potential game-changer, enabling a cheaper - yet more efficient - alternative to traditional computational strategies. It is also a new paradigm for autonomous experimentation for accelerated discovery and machine-assisted design of functional 2D materials and heterostructures. Here, the study reviews the recent progress and challenges of such endeavors, and highlight various emerging opportunities in this frontier research area.

9.
Int J Mol Sci ; 14(2): 3705-17, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23434666

RESUMEN

We demonstrate the application of the 1,3-dipolar cycloaddition ("click" reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining the colloidal stability of the Au NPs in aqueous solution. A procedure was developed to determine the driving forces governing the selectivity and reactivity of citrate-stabilized and ligand-functionalized Au NPs on patterned self-assembled monolayers. We observed selective and remarkably stable chemical bonding of the Au NPs to the complimentarily functionalized substrate areas, even when estimating that only 1-2 chemical bonds are formed between the particles and the substrate.

10.
Nat Commun ; 14(1): 4911, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587135

RESUMEN

Approaching limitations of digital computing technologies have spurred research in neuromorphic and other unconventional approaches to computing. Here we argue that if we want to engineer unconventional computing systems in a systematic way, we need guidance from a formal theory that is different from the classical symbolic-algorithmic Turing machine theory. We propose a general strategy for developing such a theory, and within that general view, a specific approach that we call fluent computing. In contrast to Turing, who modeled computing processes from a top-down perspective as symbolic reasoning, we adopt the scientific paradigm of physics and model physical computing systems bottom-up by formalizing what can ultimately be measured in a physical computing system. This leads to an understanding of computing as the structuring of processes, while classical models of computing systems describe the processing of structures.

11.
Langmuir ; 27(2): 570-4, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21162518

RESUMEN

Controlled assembly of ferromagnetic nanoparticles on surfaces is of crucial importance for a range of spintronic and data storage applications. Here, we present a novel method for assembling monolayers of ferromagnetic FePt nanoparticles on silicon oxide substrates using "click chemistry". Reaction of alkyne-functionalized FePt nanoparticles with azide-terminated self-assembled monolayers (SAMs), on silicon oxide, leads to the irreversible attachment of magnetic nanoparticles to the surface via triazole linkers. Based on this covalent interaction, well-packed monolayers of FePt nanoparticles were prepared and nanoparticle patterns are generated on surfaces via microcontact printing (µCP).


Asunto(s)
Hierro/química , Magnetismo , Nanopartículas del Metal/química , Platino (Metal)/química , Azidas/química , Química Clic , Membranas Artificiales , Dióxido de Silicio/química , Propiedades de Superficie
12.
Adv Mater ; 33(48): e2102688, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34533867

RESUMEN

A sulfonated polyaniline (SPAN) organic electrochemical network device (OEND) is fabricated using a simple drop-casting method on multiple Au electrodes for use in reservoir computing (RC). The SPAN network has humidity-dependent electrical properties. Under high humidity, the SPAN OEND exhibits mainly ionic conduction, including charging of an electric double layer and ionic diffusion. The nonlinearity and hysteresis of the current-voltage characteristics progressively increase with increasing humidity. The rich dynamic output behavior indicates wide variations for each electrode, which improves the RC performance because of the disordered network. For RC, waveform generation and short-term memory tasks are realized by a linear combination of outputs. The waveform task accuracy and memory capacity calculated from a short-term memory task reach 90% and 33.9, respectively. Improved spoken-digit classification is realized with 60% accuracy by only 12 outputs, demonstrating that the SPAN OEND can manage time series dynamic data operation in RC owing to a combination of rich dynamic and nonlinear electronic properties. The results suggest that SPAN-based electrochemical systems can be applied for material-based computing, by exploiting their intrinsic physicochemical behavior.

13.
Langmuir ; 26(17): 14210-5, 2010 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-20695632

RESUMEN

Two fabrication schemes are reported for the direct patterning of organic monolayers on oxide-free silicon, combining top-down nanoimprint lithography and bottom-up monolayer formation. The first approach was designed to form monolayer patterns on the imprinted areas, while the second approach was designed for monolayer formation outside of the imprinted features. By both approaches, covalently bonded Si-C monolayer patterns with feature sizes ranging from 100 nm to 100 microm were created via a hydrosilylation procedure using diluted reagents. Both unfunctionalized and omega-functionalized alkenes were patterned successfully.

14.
Nano Lett ; 9(9): 3220-4, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19691342

RESUMEN

Magnetic nanoparticles are of great scientific and technological interest. The application of ferromagnetic nanoparticles for high-density data storage has great potential, but energy efficient synthesis of uniform, isolated, and patternable nanoparticles that remain ferromagnetic at room temperature is not trivial. Here, we present a low-temperature solution synthesis method for FePtAu nanoparticles that addresses all those issues and therefore can be regarded as an important step toward applications. We show that the onset of the chemically ordered face-centered tetragonal (L1(0)) phase is obtained for thermal annealing temperatures as low as 150 degrees C. Large uniaxial magnetic anisotropy (10(7) erg/cm(3)) and a high long-range order parameter have been obtained. Our low-temperature solution annealing leaves the organic ligands intact, so that the possibility for postanneal monolayer formation and chemically assisted patterning on a surface is maintained.


Asunto(s)
Aleaciones/síntesis química , Oro/química , Hierro/química , Nanopartículas del Metal/química , Platino (Metal)/química , Temperatura , Aleaciones/química , Magnetismo , Ensayo de Materiales , Nanotecnología , Tamaño de la Partícula , Soluciones , Propiedades de Superficie
15.
Int J Mol Sci ; 11(3): 1162-79, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20480007

RESUMEN

FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs onto the surface. The Al(2)O(3) substrates were functionalized with aminobutylphosphonic acid (ABP) or phosphonoundecanoic acid (PNDA) SAMs or with poly(ethyleneimine) (PEI) as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al(2)O(3), which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al(2)O(3) surface and controlling the immersion time of the modified Al(2)O(3) substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N(2)/4%H(2)) led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.


Asunto(s)
Óxido de Aluminio/química , Nanopartículas de Magnetita/química
16.
Nat Nanotechnol ; 15(12): 992-998, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33077963

RESUMEN

Many nanoscale devices require precise optimization to function. Tuning them to the desired operation regime becomes increasingly difficult and time-consuming when the number of terminals and couplings grows. Imperfections and device-to-device variations hinder optimization that uses physics-based models. Deep neural networks (DNNs) can model various complex physical phenomena but, so far, are mainly used as predictive tools. Here, we propose a generic deep-learning approach to efficiently optimize complex, multi-terminal nanoelectronic devices for desired functionality. We demonstrate our approach for realizing functionality in a disordered network of dopant atoms in silicon. We model the input-output characteristics of the device with a DNN, and subsequently optimize control parameters in the DNN model through gradient descent to realize various classification tasks. When the corresponding control settings are applied to the physical device, the resulting functionality is as predicted by the DNN model. We expect our approach to contribute to fast, in situ optimization of complex (quantum) nanoelectronic devices.

17.
Chemistry ; 15(33): 8235-40, 2009 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-19609986

RESUMEN

The treatment of a suspension of graphite oxide (GO) with sodium azide leads to a material that, after reduction, features amino groups at the top and bottom of the sheets. These groups react through microcontact printing with an isothiocyanate monolayer on a silicon oxide substrate to form covalent bonds that strongly attach to the particles on the surface. With ultrasonication it is possible to obtain exfoliation of the sheets that are not covalently bound to the surface leaving single-layer platelets attached to the substrate. The azido derivative can be also used to functionalize the graphene oxide with long alkylic chains through a click chemistry approach. This functionalization results in the exfoliation of this material in dimethylformamide. The novel materials were fully characterized by different techniques including IR spectroscopy, thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM and TEM), X-Ray photoelectron spectroscopy (XPS), and solid state NMR spectroscopy. The material with amino groups, after the reduction step, is conductive with a resistivity only approximately seven times larger than that of unprocessed graphite. This implies that after reduction of the GO, the conjugated sp2 network is largely restored. We consider this to be an important step towards a chemical approach for forming conducting large-area platelet films of single-layer graphene.

18.
Nanoscale ; 9(8): 2836-2844, 2017 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-28169380

RESUMEN

Controlling the doping concentration of silicon nanostructures is challenging. Here, we investigated three different monolayer doping techniques to obtain silicon nanowires with a high doping dose. These routes were based on conventional monolayer doping, starting from covalently bound dopant-containing molecules, or on monolayer contact doping, in which a source substrate coated with a monolayer of a carborane silane was the dopant source. As a third route, both techniques were combined to retain the benefits of conformal monolayer formation and the use of an external capping layer. These routes were used for doping fragile porous nanowires fabricated by metal-assisted chemical etching. Differences in porosity were used to tune the total doping dose inside the nanowires, as measured by X-ray photoelectron spectroscopy and secondary ion mass spectrometry measurements. The higher the porosity, the higher was the surface available for dopant-containing molecules, which in turn led to a higher doping dose. Slightly porous nanowires could be doped via all three routes, which resulted in highly doped nanowires with (projected areal) doping doses of 1014-1015 boron atoms per cm2 compared to 1012 atoms per cm2 for a non-porous planar sample. Highly porous nanowires were not compatible with the conventional monolayer doping technique, but monolayer contact doping and the combined route resulted for these highly porous nanowires in tremendously high doping doses up to 1017 boron atoms per cm2.

19.
Sci Rep ; 7: 41171, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28117371

RESUMEN

We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust nanoscale junctions carrying high current densities (up to 106 A/m2). Current-voltage data modeling demonstrates excellent hole injection. This work opens up the pathway towards nanoscale, ultrashort-channel organic transistors for high-frequency and high-current-density operation.

20.
Adv Mater ; 29(42)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28922482

RESUMEN

As the downscaling of conventional semiconductor electronics becomes more and more challenging, the interest in alternative material systems and fabrication methods is growing. A novel bottom-up approach for the fabrication of high-quality single-electron transistors (SETs) that can easily be contacted electrically in a controllable manner is developed. This approach employs the self-assembly of Au nanoparticles forming the SETs, and Au nanorods forming the leads to macroscopic electrodes, thus bridging the gap between the nano- and microscale. Low-temperature electron-transport measurements reveal exemplary single-electron tunneling characteristics. SET behavior can be significantly changed, post-fabrication, using molecular exchange of the tunnel barriers, demonstrating the tunability of the assemblies. These results form a promising proof of principle for the versatility of bottom-up nanoelectronics, and toward controlled fabrication of nanoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA