Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Langmuir ; 40(11): 5606-5616, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501265

RESUMEN

The motion of partly gold (Au)-coated Janus particles under laser irradiation is caused by self-thermophoresis. Despite numerous studies addressing this topic, the impact of the preparation method and the degree of coverage of the particle with Au on the resulting thermophoretic velocity has not yet been fully understood. A detailed understanding of the most important tuning parameters during the preparation process is crucial to design Janus particles that are optimized for Au coverage to receive a high thermophoretic velocity. In this study, we explore the influence of the fabrication process, which changes the Au cap size, on the resulting self-propulsion behavior of partly Au-coated polystyrene particles (Au-PS). Additionally, the impact of an underlying adhesion chromium layer is investigated. In addition to the most commonly used qualitative SEM and EDX measurements, we propose a novel and fast technique utilizing AFM studies to quantify the cap size. This non-invasive technique can be used to determine both the size and the maximum thickness of the Au cap. The Au cap size was systematically varied in a range between about 36 and 74% by different preparation strategies. Nevertheless, we showed that the differing Au cap sizes of the Janus particles in this range have no obvious effect on the thermophoretic velocity. This is a surprising result since one would expect an effect of the Au cap size due to different solvent flows around the Janus particles and is attributed to an additional torque near the surface of the measuring cell.

2.
Soft Matter ; 20(6): 1333-1346, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38251414

RESUMEN

Cellulose, as a naturally abundant and biocompatible material, is still gaining interest due to its high potential for functionalization. This makes cellulose a promising candidate for replacing plastics. Understanding how cellulose interacts with various additives is crucial for creating composite materials with diverse properties, as it is the case for plastics. In addition, the mechanical properties of the composite materials are assumed to be related to the mobility of the additives against the cellulose. Using a well-defined cellulose model surface (CMS), we aim to understand the adsorption and desorption of two polymeric particles (core-shell particles and microgels) to/from the cellulose surface. The nanomechanics of particles and CMS are quantified by indentation measurements with an atomic force microscope (AFM). AFM topography measurements quantified particle adsorption and desorption on the CMS, while peak force AFM measurements determined the force needed to move individual particles. Both particles and the CMS exhibited pH-dependent charge behavior, allowing a tunable interaction between them. Particle adsorption was irreversible and driven by electrostatic forces. In contrast, desorption and particle mobility forces are dominated by structural morphology. In addition, we found that an annealing procedure consisting of swelling/drying cycles significantly increased the adhesion strength of both particles. Using the data, we achieve a deeper understanding of the interaction of cellulose with polymeric particles, with the potential to advance the development of functional materials and contribute to various fields, including smart packaging, sensors, and biomedical applications.

3.
J Am Chem Soc ; 145(6): 3615-3623, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36749116

RESUMEN

Two polyaspartates bearing ortho-fluorinated azobenzenes (pFAB) as photo-responsive groups in the side chain were synthesized: PpFABLA (1) and co-polyaspartate PpFABLA-co-PBLA [11, 75%(n/n) PpFABLA content]. As a consequence of the E/Z-isomerization of the side chain, PpFABLA (1) undergoes a visible-light-induced reversible coil-helix transition in solution: Green light (525 nm) affords the coil, and violet light (400 nm) affords the helix. pFAB significantly increases the thermal stability of the Z-isomer at 20 °C (t1/2 = 66 d for the Z-isomer) and effectively counters the favored back formation of the helix. At 20%(w/w) polymer concentration, the helical polymer forms a lyotropic liquid crystal (LLC) that further orients unidirectionally inside a magnetic field, while the coil polymer results in an isotropic solution. The high viscosity of the polymer solution stabilizes the coexistence of liquid crystalline and isotropic domains, which were obtained with spatial control by partial light irradiation. When used as an alignment medium, PpFABLA (1) enables (i) the measurement of dipolar couplings without the need for a separate isotropic reference and (ii) the differentiation of enantiomers. PpFABLA-co-PBLA (11) preserves the helical structure, by intention, independently of the E/Z-isomerization of the side chain: Both photo-isomers of PpFABLA-co-PBLA (11) form a helix that─at a concentration of 16%(w/w)─form an LLC. Despite the absence of a change in the secondary structure, the E/Z-isomerization of the side chain changes the morphology of the liquid crystal and leads to different sets of dipolar coupling for the same probe molecule.

4.
Langmuir ; 39(1): 111-118, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36525629

RESUMEN

Foam films display exciting systems as on one hand they dictate the performance of macroscopic foams and on the other hand they allow studies of surface forces. With regard to surface forces, we attempt to disentangle the effect of the foam film surfaces and the foam film bulk. For that, we study the influence of salt (LiBr) on foam films formed by mixtures of oppositely charged polyelectrolyte and surfactant: anionic monosulfonated polyphenylene sulfone (sPSO2-220) and cationic tetradecyltrimethylammonium bromide (C14TAB). Adding a small amount of salt (≤10-3 M) decreases the foam film stability due to a weakened electrostatic net repulsion. In contrast, a large amount of salt (10-2 M) unexpectedly increases the foam film stability. Disjoining pressure isotherms reveal that the increased stability is due to an additional steric stabilization, which is attributed to sPSO2-220/C14TAB complexes in the film bulk. These bulk complexes also contribute to the measured apparent surface potential between the two air/water interfaces. We find, for the first time, the formation of Newton black films for mixtures of anionic polyelectrolytes and cationic surfactants.

5.
J Chem Phys ; 158(19)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37184008

RESUMEN

We investigate the wetting properties of PDMS (Polydimethylsiloxane) pseudo-brush anchored on glass substrates. These PDMS pseudo-brushes exhibit a significantly lower contact angle hysteresis compared to hydrophobic silanized substrates. The effect of different molar masses of the used PDMS on the wetting properties seems negligible. The surface roughness and thickness of the PDMS pseudo-brush are measured by atomic force microscopy and x-ray reflectivity. The outcome shows that these surfaces are extremely smooth (topologically and chemically), which explains the reduction in contact angle hysteresis. These special features make this kind of surfaces very useful for wetting experiments. Here, the dynamics of the four-phase contact point are studied on these surfaces. The four-phase contact point dynamics on PDMS pseudo-brushes deviate substantially from its dynamics on other substrates. These changes depend only a little on the molar mass of the used PDMS. In general, PDMS pseudo-brushes increase the traveling speed of four-phase contact point on the surface and change the associated power law of position vs time.

6.
Langmuir ; 38(17): 5275-5285, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35142528

RESUMEN

Combining stimuli-responsive properties of gels with adhesive properties of mussels is highly interesting for a large field of applications as, e.g., in life science. Therefore, the present paper focuses on the copolymerization of poly(N-isopropylacrylamide) (PNIPAM) microgels with dopamine methacrylamide (DMA). A detailed understanding of reaction kinetics is crucial to figure out an optimized synthesis strategy for tailoring microgels with adhesive properties. The present study addresses the influence of relevant synthesis parameters as the injection time of DMA during the microgel synthesis and the overall reaction time of the microgel. Reaction kinetics were studied by mass spectrometry of time samples taken during the microgel synthesis. This allowed us to determine the monomer consumption of NIPAM, the cross-linker N,N'-methylenebisacrylamide (BIS), and DMA. A second-order reaction kinetics was found for DMA incorporation. The amount of DMA incorporated in the resulting microgel was successfully determined by a combination of UV-vis and NMR spectroscopy to level off limitations of both methods. The dependence of the hydrodynamic radius on temperature was determined by DLS measurements for the microgels. While an early injection of DMA stops the PNIPAM polymerization due to scavenging, it greatly enhances the reaction speed of DMA. The faster reaction of DMA and the incomplete NIPAM and BIS conversion also compensate for shorter reaction times with respect to the incorporated amount of DMA. On the contrary, a later injection of DMA leads to a full NIPAM monomer and BIS cross-linker consumption. An overall reaction time of 60 min ensures the DMA incorporation. Longer reaction times lead to clumping. First adhesion tests show an increased adhesion of P(NIPAM-co-DMA) microgels compared to pure PNIPAM microgels, when mechanical stress is applied.


Asunto(s)
Microgeles , Acrilamidas , Resinas Acrílicas , Adhesivos , Dopamina , Cinética , Polimerizacion
7.
Langmuir ; 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35605251

RESUMEN

Mineral nanoparticle suspensions with consolidating properties have been successfully applied in the restoration of weathered architectural surfaces. However, the design of these consolidants is usually stone-specific and based on trial and error, which prevents their robust operation for a wide range of highly heterogeneous monumental stone materials. In this work, we develop a facile and versatile method to systematically study the consolidating mechanisms in action using a surface forces apparatus (SFA) with real-time force sensing and an X-ray surface forces apparatus (X-SFA). We directly assess the mechanical tensile strength of nanosilica-treated single mineral contacts and show a sharp increase in their cohesion. The smallest used nanoparticles provide an order of magnitude stronger contacts. We further resolve the microstructures and forces acting during evaporation-driven, capillary-force-induced nanoparticle aggregation processes, highlighting the importance of the interactions between the nanoparticles and the confining mineral walls. Our novel SFA-based approach offers insight into nano- and microscale mechanisms of consolidating silica treatments, and it can aid the design of nanomaterials used in stone consolidation.

8.
Soft Matter ; 18(48): 9249-9262, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36440620

RESUMEN

Responsive aqueous foams are very interesting from a fundamental point of view and for various applications like foam flooding or foam flotation. In this study thermoresponsive microgels (MGs) made from poly(N-isopropyl-acrylamide) (PNIPAM) with varying cross-linker content, are used as foam stabilisers. The foams obtained are thermoresponsive and can be destabilised by increasing the temperature. The structuring of MGs inside the foam films is investigated with small-angle neutron scattering and in a thin film pressure balance. The foam films are inhomogeneous and form a network-like structure, in which thin and MG depleted zones with a thickness of ca. 30 nm are interspersed in a continuous network of thick MG containing areas with a thickness of several 100 nm. The thickness of this continuous network is related to the elastic modulus of the individual MGs, which was determined by atomic force microscopy indentation experiments. Both, the elastic moduli and foam film thicknesses, indicate a correlation to the network elasticity of the MGs predicted by the affine network model.

9.
Soft Matter ; 18(5): 1089-1099, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35037679

RESUMEN

The paper addresses coupling of magnetic nanoparticles (MNPs) with the polymer matrix of temperature-sensitive microgels and their response to magnetic fields. Therefore, CoFe2O4@CA (CA = citric acid) NPs are embedded within N-isopropylacrylamid (NIPAM) based microgels. The volume phase transition (VPT) of the magnetic microgels and the respective pure microgels is studied by dynamic light scattering and electrophoretic mobility measurements. The interaction between MNPs and microgel network is studied via magnetometry and AC-susceptometry using a superconducting quantum interference device (SQUID). The data show a significant change of the magnetic properties by crossing the VPT temperature (VPTT). The change is related to the increased confinement of the MNP due to the shrinking of the microgels. Modifying the microgel with hydrophobic allyl mercaptan (AM) affects the swelling ability and the magnetic response, i.e. the coupling of MNPs with the polymer matrix. Modeling the AC-susceptibility data results in an effective size distribution. This distribution represents the varying degree of constraint in MNP rotation and motion by the microgel network. These findings help to understand the interaction between MNPs and the microgel matrix to design multi responsive systems with tunable particle matrix coupling strength for future applications.

10.
Soft Matter ; 17(41): 9428-9433, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34610082

RESUMEN

While substrates naturally occur in most microswimmer experiments, their impact on the swimming performance is not well understood. In the present study, we functionalize substrates with polymer brushes of varying swelling properties, grafting densities and brush lengths to systematically modify and explore the substrate-swimmer interactions. Notably, the swimming speed does not monotonically change with brush thickness, but shows a distinct maximum at a certain intermediate thickness, which results from two counteracting factors: surface charge and surface roughness. The results show that the speed of thermophoretic microswimmers does not only depend on the particle properties but is also strongly influenced by the properties of the underlying substrate. This provides a route to control the speed of microswimmers via the underlying substrate, which could be applied in the future e.g. to design complex motility landscapes by patterning substrates with polymer brushes. It is expected that similar effects would occur for diffusio- and electrophoretic particles.

11.
Soft Matter ; 17(36): 8258-8268, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34550151

RESUMEN

A general drawback of microgels is that they do not stabilize water-in-oil (w/o) emulsions of non-polar oils. Simultaneous stabilization with solid hydrophobic nanoparticles and soft hydrophilic microgels overcomes this problem. For a fundamental understanding of this synergistic effect the use of well defined particle systems is crucial. Therefore, the present study investigates the stabilization of water droplets in a highly non-polar oil phase using temperature responsive, soft and hydrophilic PNIPAM microgel particles (MGs) and solid and hydrophobic silica nanospheres (SNs) simultaneously. The SNs are about 20 times smaller than the MGs. In a multiscale approach the resulting emulsions are studied from the nanoscale particle properties over microscale droplet sizes to macroscopic observations. The synergy of the particles allows the stabilization of water-in-oil (w/o) emulsions, which was not possible with MGs alone, and offers a larger internal interface than the stabilization with SNs alone. Furthermore, the incorporation of hydrophilic MGs into a hydrophobic particle layer accelerates the emulsions sedimentation speed. Nevertheless, the droplets are still sufficiently protected against coalescence even in the sediment and can be redispersed by gentle shaking. Based on droplet size measurements and cryo-SEM studies we elaborate a model, which explains the found phenomena.

12.
Phys Chem Chem Phys ; 23(2): 1325-1334, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33367336

RESUMEN

The description of forces across confined complex fluids still holds many challenges due to the possible overlap of different contributions. Here, an attempt is made to untangle the interaction between charged surfaces across nanoparticle suspensions. Interaction forces are measured using colloidal-probe atomic force microscopy. The experimental force profiles are considered as a superposition of double layer and structural forces. In order to independently describe the decay of the double layer force, the ionic strength of the suspension is determined by electrolytic conductivity measurements. Jellium approximation is used to define the impact of the fluid on screening the surface potential. There, the nanoparticles are considered homogeneously distributed across the fluid and screening is only carried out via the particles counterions and added salt. The structural force follows a damped oscillatory profile due to the layer-wise expulsion of the nanoparticles upon approach of both surfaces. The description of the oscillatory structural force is extended by a depletion layer next to the confining surfaces, with no nanoparticles present. The thickness of the depletion layer is related to the electrostatic repulsion of the charged nanoparticles from the like-charged surfaces. The results show that the total force profile is a superposition of independent force contributions without any mutual effects. Using this rather simple model describes the complete experimentally determined interaction force profiles very well from surface separations of a few hundred nanometres down to the surfaces being almost in contact.

13.
Phys Chem Chem Phys ; 23(3): 2355-2367, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33449989

RESUMEN

Pickering emulsions (PEs), i.e. particle stabilized emulsions, are used as reaction environments in biphasic catalysis for the hydroformylation of 1-dodecene into tridecanal using the catalyst rhodium (Rh)-sulfoxantphos (SX). The present study connects the knowledge about particle-catalyst interactions and PE structure with the reaction results. It quantifies the efficiency of the catalytic performance of the catalyst localized in the voids between the particles (liquid-liquid interface) and the catalyst adsorbed on the particle surface (liquid-solid interface) using a new numerical approach. First, it is ensured that the overall packing density and geometry at the droplet interface and the size of the water droplets of the resulting w/o PEs are predictable. Second, it is shown that approximately all particles assemble at the droplet surface after emulsion preparation and neither the packing parameter nor the droplet size change with the particle surface charge or size when the total particle cross section is kept constant. Third, studies on the influence of the catalyst on the emulsion structure reveal that irrespective of the particle charge the surface active and negatively charged catalyst Rh-SX reduces the PE droplet size significantly and decreases the particle packing parameter from s = 0.91 (hexagonal packing in 2D) to s = 0.69 (shattered structure). In this latter case, large voids of the free w/o interface form and become covered with the catalyst. With a deep knowledge about the PE structure the reaction efficiencies of the liquid-liquid vs. the solid-liquid interface are quantified. By excluding any other influence factors, it is shown that the activity of the catalyst is the same at the fluid and solid interface and the performance of the reaction is explained by the geometry of the system. After the reaction, the catalyst retention via membrane filtration is shown to be successfully achieved without damaging the emulsions. This enables the continuous recovery of the catalyst, i.e. the most expensive compound in PE-based catalytic reactions, being a crucial criterion for industrial applications.

14.
Molecules ; 26(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34299413

RESUMEN

Aqueous solutions of a nonionic surfactant (either Tween20 or BrijL23) and an anionic surfactant (sodium dodecyl sulfate, SDS) are investigated, using small-angle neutron scattering (SANS). SANS spectra are analysed by using a core-shell model to describe the form factor of self-assembled surfactant micelles; the intermicellar interactions are modelled by using a hard-sphere Percus-Yevick (HS-PY) or a rescaled mean spherical approximation (RMSA) structure factor. Choosing these specific nonionic surfactants allows for comparison of the effect of branched (Tween20) and linear (BrijL23) surfactant headgroups, both constituted of poly-ethylene oxide (PEO) groups. The nonionic-anionic surfactant mixtures are studied at various concentrations up to highly concentrated samples (ϕ ≲ 0.45) and various mixing ratios, from pure nonionic to pure anionic surfactant solutions. The scattering data reveal the formation of mixed micelles already at concentrations below the critical micelle concentration of SDS. At higher volume fractions, excluded volume effects dominate the intermicellar structuring, even for charged micelles. In consequence, at high volume fractions, the intermicellar structuring is the same for charged and uncharged micelles. At all mixing ratios, almost spherical mixed micelles form. This offers the opportunity to create a system of colloidal particles with a variable surface charge. This excludes only roughly equimolar mixing ratios (X≈ 0.4-0.6) at which the micelles significantly increase in size and ellipticity due to specific sulfate-EO interactions.

15.
Langmuir ; 36(27): 7775-7780, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32544339

RESUMEN

Thermophoresis is a common mechanism that can drive autonomous motion of Janus particles under the right environment. Despite recent efforts to investigate the mechanism underlying the self-propulsion of thermophoretic particles, the interaction of particles with the substrate underneath the particle has remained unclear. In this work, we explore the impact of poly(N-isopropylacrylamide) (PNIPAM)-functionalized substrate with various chain lengths on the active motion of a single polystyrene particle half-coated with gold (Au-PS). We show how the modification of the substrate with polymer brushes enhances the particle velocity, where brush chain length plays a significant role as well. The results demonstrate the intrinsic dependence of particle velocity on the flow boundary condition and the thermo-osmotic slip at the interface.

16.
Langmuir ; 35(49): 16341-16352, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31714092

RESUMEN

The investigation of the response kinetics of smart colloidal microgel films is crucial for their optimization to enable advanced applications. We study the classical thermoresponsive microgel model system N-isopropylacrylamide cross-linked with N,N'-methylenebisacrylamide. Without the typically used polyelectrolyte coating of the substrate, thin microgel films are prepared in a single spin-coating step. Atomic force microscopy measurements reveal an extremely dense packing, resulting in a homogeneous compact thin film of microgel particles. The hydration kinetics of these films in H2O and D2O atmospheres as well as the kinetics of the solvent exchange between both water species are investigated with in situ time-of-flight neutron reflectometry (TOF-NR) and in situ Fourier-transform infrared (FTIR) spectroscopy. With accounting for a nonconstant humid atmosphere, the intrinsic diffusion dynamics of water molecules into the thin microgel film are modeled and the specific time constant τ and the effective Flory-Huggins interaction parameter χeff are determined. Comparing the results in H2O and D2O atmospheres, TOF-NR and FTIR spectroscopy results show an increased affinity of the microgel films toward H2O as compared to D2O. From the FTIR spectroscopy data, we further identify different kinetics of intermolecular processes and order them according to their temporal evolution.

17.
Soft Matter ; 15(32): 6536-6546, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31355828

RESUMEN

The preparation of poly(N-isopropylacrylamide) microgels via classical precipitation polymerization (batch method) and a continuous monomer feeding approach (feeding method) leads to different internal crosslinker distributions, i.e., from core-shell-like to a more homogeneous one. The internal structure and dynamics of these microgels with low and medium crosslinker concentrations are studied with dynamic light scattering and small-angle neutron scattering in a wide q-range below and above the volume phase transition temperature. The influence of the preparation method, and crosslinker and initiator concentration on the internal structure of the microgels is investigated. In contrast to the classical conception where polymer microgels possess a core-shell structure with the averaged internal polymer density distribution within the core part, a detailed view of the internal inhomogeneities of the PNIPAM microgels and the presence of internal domains even above the volume phase transition temperature, when polymer microgels are in the deswollen state, are presented. The correlation between initiator concentration and the size of internal domains that appear inside the microgel with temperature increase is demonstrated. Moreover, the influence of internal inhomogeneities on the dynamics of the batch- and feeding-microgels studied with neutron spin-echo spectroscopy is reported.

18.
Soft Matter ; 15(5): 1053-1064, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30663759

RESUMEN

Poly(N-isopropylacrylamide) microgel particles were prepared via a "classical" surfactant-free precipitation polymerization and a continuous monomer feeding approach. It is anticipated that this yields microgel particles with different internal structures, namely a dense core with a fluffy shell for the classical approach and a more even crosslink distribution in the case of the continuous monomer feeding approach. A thorough structural investigation of the resulting microgels with dynamic light scattering, atomic force microscopy and small angle neutron scattering was conducted and related to neutron spin echo spectroscopy data. In this way a link between structural and dynamic features of the internal polymer network was made.

19.
Langmuir ; 34(38): 11518-11525, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30179490

RESUMEN

The paper addresses the swelling of polyelectrolyte multilayers (PEMs) at varying humidity. In particular, a new model will be presented, which takes the gradual filling of voids into account. Absorption of water results in PEM swelling. This absorbed water can be distinguished into swelling and void water. Swelling water leads to an increase in thickness and a change of the optical properties of PEMs, while the void water results only in a change of the optical properties. In former studies, neutron reflectometry was used to distinguish between swelling and void water. However, as we show in this study, it is possible to resolve the two different kinds of water in PEMs by ellipsometry, a much simpler tool. The present study evaluates and interprets the refractive index of polystyrenesulfonate/polydiallyldimethylammonium chloride (PSS/PDADMAC) PEMs. Both the swelling behavior and the refractive index change as a function of relative humidity and were found to be independent of the layer number. The void model and the extended void model were used to describe the data. The void model allows fitting the experimentally determined refractive index at humidity beyond 20% RH but fails for humidity lower than 20% RH. Therefore, we modified the existing model in order to account for air-water exchange. The extended void model assumes a gradual air-water exchange at low h and describes the refractive index over the entire humidity range in a precise way. Up to 30% RH, air and water coexist. Above this threshold, the voids are completely filled with water and this threshold does not change either with layer number or with the outermost layer. Furthermore, this model allows the determination of the volume fraction of the voids (0.05 ± 0.01) and the refractive index of the pure polymer matter (1.592 ± 0.002).

20.
Soft Matter ; 14(26): 5383-5392, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29932195

RESUMEN

The paper addresses additional short ranged repulsion in structural oscillation forces between silica surfaces across a suspension of silica nanoparticles. Fit and prediction of the structural oscillation forces usually involve an exponentially decreasing harmonic as introduced by Israelachvili [Israelachvili, Intermolecular & surface forces, Academic Press, San Diego, USA, 1985]. Recently we demonstrated, for aqueous suspensions of silica nanoparticles at various concentrations, that this fit equation is insufficient to describe the structural oscillation forces in its whole range [Schön et al., Beilstein J. Nanotechnol., 2018, 9, 1095-1107]. An additional force acting on short separations leads to the fit parameters scattering widely as well as being dependent on each other and the starting point of the fit. An additional repulsive term was introduced to solve these problems. The additional repulsive force has also been observed by others, in ionic liquids and polyelectrolyte solutions at high ionic strength. It was attributed to the diffusive double layer forces. The rise of the additional repulsion with increasing particle concentration seems to conflict with this interpretation. In this work, colloidal probe atomic force microscopy is used in aqueous suspensions of silica nanoparticles to investigate other contributing factors such as the increasing hydrodynamic drag in the normal direction to the confining surface with increasing particle concentration. A kinetic component to the structural oscillation forces is observed. Furthermore, sodium chloride is used to adjust the ionic strength of two different concentrated silica nanoparticle suspensions. For these systems the additional decay length is compared to the Debye length in the range from low to high ionic strength. A master curve of the additional decay length over Debye length at different ionic strengths, approach speed and particle concentration is produced. It affirms the link between the two and the connection between the additional force and the diffusive double layer forces. The increasing trend for the additional repulsion with increasing particle concentration reveals a synergistic effect of diffusive double layer forces and structural oscillation forces at low to medium ionic strength, which cannot be observed at high ionic strength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA