Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 22(1): 141-149, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33889057

RESUMEN

Bixbyite α -Mn2O3 is an inexpensive Earth-abundant mineral that can be used to drive both oxygen evolution (OER) and oxygen reduction reactions (ORR) in alkaline conditions. It possesses a subtle orthorhombic → cubic phase change near room temperature that suppresses Jahn-Teller distortions and presents a unique opportunity to study how atomic structure affects the electronic structure and catalytic activity at a temperature range that is easily accessible in OER/ORR experiments. Previously, we observed that heat-treated α -Mn2O3 had a better performance as a bifunctional catalyst in the oxygen evolution (OER) and oxygen reduction reactions (ORR) (Dalton Trans. 2016, 45, 18,494-18,501). We hypothesized that heat-treatment pinned the material into a more electrochemically active cubic phase. In this manuscript, we use high-resolution X-ray diffraction to collect the temperature-dependent structures of α -Mn2O3, and then input them into ab initio calculations. The electronic structure calculations indicate that the orthorhombic → cubic phase transition causes the Mn 3d and O 2p bands to overlap and mix covalently, transforming α -Mn2O3 from a semiconductor to a semimetal. This subtle change in structure also modifies Mn-O-Mn bond distances, which may improve the activity of the material in oxygen electrochemistry. OER and ORR experiments were performed using the same electrode at various temperatures. They show a jump in the exchange current density near the phase change temperature, demonstrating the higher activity of the cubic phase.

2.
Sci Technol Adv Mater ; 22(1): 160-172, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33762891

RESUMEN

Rare-earth-doped nanoparticles (NPs), such as NaGdF4 nanocrystals doped with light-emitting rare earth ions, are promising bimodal probes that allow the integration of over 1000 nm near-infrared (OTN-NIR; NIR-II/III) fluorescence imaging and magnetic resonance imaging (MRI) of live bodies. A precise control of the particle size is the key factor for achieving a high signal-to-noise ratio in both NIR fluorescence and MR images and for regulating their function in the body. In this study, size-controlled NaGdF4:Yb3+, Er3+ NPs prepared by stepwise crystal growth were used for in vivo bimodal imaging. Hexagonal NaGdF4:Yb3+,Er3+ NPs coated with poly(ethylene glycol)-poly(acrylic acid) block copolymer, with hydrodynamic diameters of 15 and 45 nm, were prepared and evaluated as bimodal NPs for OTN-NIR fluorescence imaging and MRI. Their longitudinal (T 1) and transverse (T 2) relaxation rates at the static magnetic field strength of 1.0 T, as well as their cytotoxicity towards NIH3T3 cell lines, were evaluated and compared to study the effect of size. Using these particles, blood vessel visualization was achieved by MRI, with the highest relaxometric ratio (r 1/r 2) of 0.79 reported to date for NaGdF4-based nanoprobes (r 1 = 19.78 mM-1 s-1), and by OTN-NIR fluorescence imaging. The results clearly demonstrate the potential of the size-controlled PEG-modified NaGdF4:Yb3+,Er3+ NPs as powerful 'positive' T 1-weight contrast MRI agents and OTN-NIR fluorophores.

3.
Sci Technol Adv Mater ; 21(1): 29-42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32128006

RESUMEN

In order to exploit full potential of materials, it is necessary to fundamentally control their microstructures through grain refinement and orientation. Deformation and recrystallization are means to control the microstructure. Some recent examples of research on deformation and recrystallization which make use of advanced analytical techniques and computational materials science are examined and current limitations are identified. Finally, the potential for future developments is considered with respect to the unresolved technical problems that must be addressed as part of the development of new steels.

4.
Sci Technol Adv Mater ; 21(1): 205-218, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32341720

RESUMEN

The aim of this work is to investigate quench induced precipitation during continuous cooling in aluminium wrought alloys EN AW-7150 and EN AW-6082 using in situ synchrotron wide-angle X-ray scattering (WAXS). While X-ray diffraction is usually an ex situ method, a variety of diffraction patterns were recorded during the cooling process, allowing in situ analysis of the precipitation process. The high beam energy of about 100 keV allows the beam to penetrate a bulk sample with a 4 mm diameter in a quenching dilatometer. Additionally, the high intensity of a synchrotron source enables sufficiently high time resolution for fast in situ cooling experiments. Reaction peaks could be detected and compared with results from differential scanning calorimetry (DSC) by this method. A methodology is presented in this paper to evaluate WAXS data in a way that is directly comparable to DSC-experiments. The results show a high correlation between both techniques, DSC and WAXS, and can significantly improve continuous cooling precipitation diagrams.

5.
Sci Technol Adv Mater ; 21(1): 303-322, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33628119

RESUMEN

The large and vivid field of intermetallic compounds in catalysis is reviewed to identify necessities, strategies and new developments making use of the advantageous catalytic properties of intermetallic compounds. Since recent reviews summarizing contributions in heterogeneous catalysis as well as electrocatalysis are available, this contribution is not aiming at a comprehensive literature review. To introduce the field, first the interesting nature of intermetallic compounds is elaborated - including possibilities as well as requirements to address catalytic questions. Subsequently, this review focuses on exciting developments and example success stories of intermetallic compounds in catalysis. Since many of these are based on recent advances in synthesis, a short overview of synthesis and characterisation is included. Thus, this contribution aims to be an introduction to the newcomer as well as being helpful to the experienced researcher by summarising the different approaches. Selected examples from literature are chosen to illustrate the versatility of intermetallic compounds in heterogeneous catalysis where the emphasis is on developments since the last comprehensive review in the field.

6.
Sci Technol Adv Mater ; 21(1): 737-766, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33192179

RESUMEN

The low thermal conductivity of polymers is a barrier to their use in applications requiring high thermal conductivity such as electronic packaging, heat exchangers, and thermal management devices. Polyolefins represent about 55% of global thermoplastic production, and therefore improving their thermal conductivity is essential for many applications. This review analyzes the advances in enhancing the thermal conductivity of polyolefin composites. First, the mechanisms of thermal transport in polyolefin composites and the key parameters that govern conductive heat transfer through the interface between the matrix and the filler are discussed. Then, the advantage and limitations of the current methods for measuring thermal conductivity are analyzed. Moreover, the progress in predicting the thermal conductivity of polymer composites using modeling and simulation is discussed. Furthermore, polyolefin composites and nanocomposites with different thermally conductive fillers are reviewed and analyzed. Finally, the key challenges and future directions for developing thermally enhanced polyolefin composites are outlined.

7.
Sci Technol Adv Mater ; 20(1): 543-556, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231446

RESUMEN

The crystal structure of η″-Fe3Al7+x , the low-temperature phase of η-Fe2Al5 with a composition on the Fe-rich side of the solid solubility range, has been determined by synchrotron X-ray single-crystal diffraction combined with scanning transmission electron microscopy. The η″ phase possesses commensurate long-period-ordered superlattice structures (space group Pmcn) based on the parent orthorhombic unit cell of η-Fe2Al5, consisting of twin domains (orientation variants) alternately stacked along the long-periodicity axis. Each of the twin domains possesses a motif structure belonging to the base-centered monoclinic space group C2/m, with a cell volume twice that of the parent orthorhombic unit cell (space group Cmcm). One-fourth of the c-axis chain sites corresponding to Al2- and Al3-sites in the η phase are respectively occupied by both Fe and Al atoms and exclusively by Al atoms in a regular manner. This regularity is disturbed in the twin-boundary region, giving rise to structural/compositional modulation. Because of the different chemical compositions between the motif structure and twin-boundary region, the η″ phase with various compositions can be constructed only by changing the number of the parent orthorhombic unit cells to be stacked along the orthorhombic c-axis, without changing the atomic arrangements for the motif structure or the twin boundary to account for the observed solid solubility range. The chemical formula of the η″ phase can thus be expressed as Fe3Al7+x under a simple assumption on the occupancies for Al/Fe atoms in the c-axis chain sites.

8.
Sci Technol Adv Mater ; 20(1): 673-687, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275459

RESUMEN

First magnetic characterization of a recently developed generation of carbide free bainitic steels, known as Nanobain, has been performed. Stability of its retained austenite at cryogenic temperatures has been studied by means of X-ray diffraction, microscopy, dilatometry and magnetic measurements. Two morphologies for this phase (blocky-type and film-type) appear in a different proportion depending on the chemical composition and the applied thermal treatment. Inhibition of the martensitic transformation, when decreasing the temperature down to -271°C, has been observed in those microstructures with higher proportion of film-type austenite. The paramagnetic state of austenite at room temperature seems to lead to different magnetic behaviors (ferromagnetic, antiferromagnetic) at cryogenic temperatures (TC or TN being around -23°C in all the studied samples), depending on the proportion of such morphological features. Furthermore, irreversibility with temperature on the evolution of such magnetic behaviors has been observed for all the studied bainitic structures and is proposed to be due to a magnetic proximity effect.

9.
Sci Technol Adv Mater ; 20(1): 1022-1030, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31723369

RESUMEN

Bi2Te3 nanowires with diameters ranging from 25 to 270 nm, ultra-high aspect ratio, and uniform growth front were fabricated by electrodeposition, pulsing between zero current density during the off time and constant potential during the on time (pulsed-current-voltage method, p-IV). The use of zero current density during the off time is to ensure no electrodeposition is carried out and the system is totally relaxed. By this procedure, stoichiometric nanowires oriented perpendicular to the c-axis is obtained for the different diameters of porous alumina templates. In addition, the samples show a uniform growth front with ultra-high aspect ratio single crystal nanowires. The high degree of crystallinity was verified by transmission electron backscatter diffraction. This characterization revealed that the nanowires present both large single crystalline areas and areas with alternating twin configurations.

10.
Sci Technol Adv Mater ; 19(1): 909-916, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30636994

RESUMEN

Candidate compounds for new thermoelectric and superconducting materials, which have narrow band gap and flat bands near band edges, were exhaustively searched by the high-throughput first-principles calculation from an inorganic materials database named AtomWork. We focused on PbBi2Te4 which has the similar electronic band structure and the same crystal structure with those of a pressure-induced superconductor SnBi2Se4 explored by the same data-driven approach. The PbBi2Te4 was successfully synthesized as single crystals using a melt and slow cooling method. The core level X-ray photoelectron spectroscopy analysis revealed Pb2+, Bi3+ and Te2- valence states in PbBi2Te4. The thermoelectric properties of the PbBi2Te4 sample were measured at ambient pressure and the electrical resistance was also evaluated under high pressure using a diamond anvil cell with boron-doped diamond electrodes. The resistance decreased with increasing of the pressure, and pressure-induced superconducting transitions were discovered at 2.5 K under 10 GPa. The maximum superconducting transition temperature increased up to 8.4 K at 21.7 GPa. The data-driven approach shows promising power to accelerate the discovery of new thermoelectric and superconducting materials.

11.
Sci Technol Adv Mater ; 19(1): 871-882, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30479675

RESUMEN

Structural defects such as voids and compositional inhomogeneities may affect the performance of Cu(In,Ga)Se2 (CIGS) solar cells. We analyzed the morphology and elemental distributions in co-evaporated CIGS thin films at the different stages of the CIGS growth by energy-dispersive x-ray spectroscopy in a transmission electron microscope. Accumulation of Cu-Se phases was found at crevices and at grain boundaries after the Cu-rich intermediate stage of the CIGS deposition sequence. It was found, that voids are caused by Cu out-diffusion from crevices and GBs during the final deposition stage. The Cu inhomogeneities lead to non-uniform diffusivities of In and Ga, resulting in lateral inhomogeneities of the In and Ga distribution. Two and three-dimensional simulations were used to investigate the impact of the inhomogeneities and voids on the solar cell performance. A significant impact of voids was found, indicating that the unpassivated voids reduce the open-circuit voltage and fill factor due to the introduction of free surfaces with high recombination velocities close to the CIGS/CdS junction. We thus suggest that voids, and possibly inhomogeneities, limit the efficiency of solar cells based on three-stage co-evaporated CIGS thin films. Passivation of the voids' internal surface may reduce their detrimental effects.

12.
Sci Technol Adv Mater ; 19(1): 613-648, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30181789

RESUMEN

Monolayer graphene exhibits extraordinary properties owing to the unique, regular arrangement of atoms in it. However, graphene is usually modified for specific applications, which introduces disorder. This article presents details of graphene structure, including sp2 hybridization, critical parameters of the unit cell, formation of σ and π bonds, electronic band structure, edge orientations, and the number and stacking order of graphene layers. We also discuss topics related to the creation and configuration of disorders in graphene, such as corrugations, topological defects, vacancies, adatoms and sp3-defects. The effects of these disorders on the electrical, thermal, chemical and mechanical properties of graphene are analyzed subsequently. Finally, we review previous work on the modulation of structural defects in graphene for specific applications.

13.
Sci Technol Adv Mater ; 19(1): 174-184, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29511395

RESUMEN

Series of co-sputtered silver-indium tin oxide (Ag-ITO) films are systematically fabricated. By tuning the atomic ratio of silver, composite films are manifested to have different microstructures with limited silver amount (<3 at.%). Two stages for film morphology changing are proposed to describe different status and growth mechanisms. The introduction of silver improves the preferred orientations of In2O3 component significantly. Remarkably, dielectric permittivity of Ag-ITO films is highly adjustable, allowing the cross-over wavelengths λc to be changed by more than 300 nm through rapid post-annealing, and thus resulting in tunable epsilon-near-zero and plasmonic properties in the near-infrared region. Lower imaginary permittivity compared with pure metal films, as well as larger tunability in λc than pure ITO films suggest the potentiality of Ag-ITO films as substituted near-infrared plasmonic materials. Extended Maxwell-Garnett model is applied for effective medium approximation and the red-shifting of epsilon-near-zero region with the increase of silver content is well-fitted. Angle-variable prism coupling is carried out to reveal the surface plasmon polariton features of our films at optical communication wavelength. Broad dips in reflectance curves around 52-56° correspond to the SPP in Ag-ITO films.

14.
Sci Technol Adv Mater ; 19(1): 194-202, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29511397

RESUMEN

Solution-processed organic small molecule solar cells (SMSCs) have achieved efficiency over 11%. However, very few studies have focused on their stability under illumination and the origin of the degradation during the so-called burn-in period. Here, we studied the burn-in period of a solution-processed SMSC using benzodithiophene terthiophene rhodamine:[6,6]-phenyl C71 butyric acid methyl ester (BTR:PC71BM) with increasing solvent vapour annealing time applied to the active layer, controlling the crystallisation of the BTR phase. We find that the burn-in behaviour is strongly correlated to the crystallinity of BTR. To look at the possible degradation mechanisms, we studied the fresh and photo-aged blend films with grazing incidence X-ray diffraction, UV-vis absorbance, Raman spectroscopy and photoluminescence (PL) spectroscopy. Although the crystallinity of BTR affects the performance drop during the burn-in period, the degradation is found not to originate from the crystallinity changes of the BTR phase, but correlates with changes in molecular conformation - rotation of the thiophene side chains, as resolved by Raman spectroscopy which could be correlated to slight photobleaching and changes in PL spectra.

15.
Sci Technol Adv Mater ; 19(1): 31-43, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29371907

RESUMEN

The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

16.
Sci Technol Adv Mater ; 18(1): 152-162, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458739

RESUMEN

Structural rejuvenation in metallic glasses by a thermal process (i.e. through recovery annealing) was investigated experimentally and theoretically for various alloy compositions. An increase in the potential energy, a decrease in the density, and a change in the local structure as well as mechanical softening were observed after thermal rejuvenation. Two parameters, one related to the annealing temperature, Ta/Tg, and the other related to the cooling rate during the recovery annealing process, Vc/Vi, were proposed to evaluate the rejuvenation phenomena. A rejuvenation map was constructed using these two parameters. Since the thermal history of metallic glasses is reset above 1.2Tg, accompanied by a change in the local structure, it is essential that the condition of Ta/Tg ≥ 1.2 is satisfied during annealing. The glassy structure transforms into a more disordered state with the decomposition of icosahedral short-range order within this temperature range. Therefore, a new glassy structure (rejuvenation) depending on the subsequent quenching rate is generated. Partial rejuvenation also occurs in a Zr55Al10Ni5Cu30 bulk metallic glass when annealing is performed at a low temperature (Ta/Tg ~ 1.07) followed by rapid cooling. This behavior probably originates from disordering in the weakly bonded (loosely packed) region. This study provides a novel approach to improving the mechanical properties of metallic glasses by controlling their glassy structure.

17.
Sci Technol Adv Mater ; 18(1): 253-262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458747

RESUMEN

Although the two-step deposition (TSD) method is widely adopted for the high performance perovskite solar cells (PSCs), the CH3NH3PbI3 perovskite crystal growth mechanism during the TSD process and the photo-generated charge recombination dynamics in the mesoporous-TiO2 (mp-TiO2)/CH3NH3PbI3/hole transporting material (HTM) system remains unexploited. Herein, we modified the concentration of PbI2 (C(PbI2)) solution to control the perovskite crystal properties, and observed an abnormal CH3NH3PbI3 grain growth phenomenon atop mesoporous TiO2 film. To illustrate this abnormal grain growth mechanism, we propose that a grain ripening process is taking place during the transformation from PbI2 to CH3NH3PbI3, and discuss the PbI2 nuclei morphology, perovskite grain growing stage, as well as Pb:I atomic ratio difference among CH3NH3PbI3 grains with different morphology. These C(PbI2)-dependent perovskite morphologies resulted in varied charge carrier transfer properties throughout the mp-TiO2/CH3NH3PbI3/HTM hybrid, as illustrated by photoluminescence measurement. Furthermore, the effect of CH3NH3PbI3 morphology on light absorption and interfacial properties is investigated and correlated with the photovoltaic performance of PSCs.

18.
Sci Technol Adv Mater ; 18(1): 693-703, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29057024

RESUMEN

The high performance and downsizing technology of three-dimensional integrated circuits (3D-ICs) for mobile consumer electronic products have gained much attention in the microelectronics industry. This has been driven by the utilization of chip stacking by through-Si-via and solder microbumps. Pb-free solder microbumps are intended to replace conventional Pb-containing solder joints due to the rising awareness of environmental preservation. The use of low-volume solder microbumps has led to crucial constraints that cause several reliability issues, including excessive intermetallic compounds (IMCs) formation and solder microbump embrittlement due to IMCs growth. This article reviews technologies related to 3D-ICs, IMCs formation mechanisms and reliability issues concerning IMCs with Pb-free solder microbumps. Finally, future outlook on the potential growth of research in this area is discussed.

19.
Sci Technol Adv Mater ; 18(1): 110-121, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28243337

RESUMEN

As the main inorganic component of xenogenic bone graft material, bone-derived biological apatite (BAp) has been widely used in implant dentistry, oral and maxillofacial surgery and orthopedics. However, BAp produced via calcination of animal bones still suffers from some drawbacks, such as insufficient mechanical strength and inadequate degradation rate, which impede its application. Fluoride is known to play important roles in both physiological and pathological processes of human hard tissues for its double effects on bones and teeth. In order to understand the effects of fluoride on the properties of BAp, as well as the mechanism behind them, porcine bone derived hydroxyapatite (PHAp) was prepared via thermal treatment, which was then fluoride incorporated at a series concentrations of sodium fluoride, and noted as 0.25-FPHAp, 0.50-FPHAp, and 0.75-FPHAp respectively. The physicochemical characteristics of the materials, including crystal morphology, crystallinity, functional groups, elemental composition, compressive strength, porosity and solubility, were then determined. The biological properties, such as protein adsorption and cell attachment, were also evaluated. It was found that the spheroid-like crystals of PHAp were changed into rod-like after fluoride substitution, resulting in a fluoride concentration-dependent increase in compressive strength, as well as a decreased porosity and solubility of the apatite. However, even though the addition of fluoride was demonstrated to enhance protein adsorption and cell attachment of the materials, the most favorable results were intriguingly achieved in FPHAp with the least fluoride content. Collectively, low level of fluoride incorporation is proposed promising for the modification of clinically used BAp based bone substitute materials, because of its being able to maintain a good balance between physicochemical and biological properties of the apatite.

20.
Sci Technol Adv Mater ; 18(1): 430-435, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740558

RESUMEN

High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 µm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10-4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately -60 µV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA