Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(14): 6790-6799, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30894480

RESUMEN

While cells within tissues generate and sense 3D states of strain, the current understanding of the mechanics of fibrous extracellular matrices (ECMs) stems mainly from uniaxial, biaxial, and shear tests. Here, we demonstrate that the multiaxial deformations of fiber networks in 3D cannot be inferred solely based on these tests. The interdependence of the three principal strains gives rise to anomalous ratios of biaxial to uniaxial stiffness between 8 and 9 and apparent Poisson's ratios larger than 1. These observations are explained using a microstructural network model and a coarse-grained constitutive framework that predicts the network Poisson effect and stress-strain responses in uniaxial, biaxial, and triaxial modes of deformation as a function of the microstructural properties of the network, including fiber mechanics and pore size of the network. Using this theoretical approach, we found that accounting for the Poisson effect leads to a 100-fold increase in the perceived elastic stiffness of thin collagen samples in extension tests, reconciling the seemingly disparate measurements of the stiffness of collagen networks using different methods. We applied our framework to study the formation of fiber tracts induced by cellular forces. In vitro experiments with low-density networks showed that the anomalous Poisson effect facilitates higher densification of fibrous tracts, associated with the invasion of cancerous acinar cells. The approach developed here can be used to model the evolving mechanics of ECM during cancer invasion and fibrosis.


Asunto(s)
Carcinoma de Células Acinares , Colágeno , Matriz Extracelular , Modelos Moleculares , Proteínas de Neoplasias , Animales , Carcinoma de Células Acinares/química , Carcinoma de Células Acinares/metabolismo , Carcinoma de Células Acinares/patología , Línea Celular Tumoral , Colágeno/química , Colágeno/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Ratas
2.
Proc Natl Acad Sci U S A ; 113(49): 14043-14048, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872289

RESUMEN

In native states, animal cells of many types are supported by a fibrous network that forms the main structural component of the ECM. Mechanical interactions between cells and the 3D ECM critically regulate cell function, including growth and migration. However, the physical mechanism that governs the cell interaction with fibrous 3D ECM is still not known. In this article, we present single-cell traction force measurements using breast tumor cells embedded within 3D collagen matrices. We recreate the breast tumor mechanical environment by controlling the microstructure and density of type I collagen matrices. Our results reveal a positive mechanical feedback loop: cells pulling on collagen locally align and stiffen the matrix, and stiffer matrices, in return, promote greater cell force generation and a stiffer cell body. Furthermore, cell force transmission distance increases with the degree of strain-induced fiber alignment and stiffening of the collagen matrices. These findings highlight the importance of the nonlinear elasticity of fibrous matrices in regulating cell-ECM interactions within a 3D context, and the cell force regulation principle that we uncover may contribute to the rapid mechanical tissue stiffening occurring in many diseases, including cancer and fibrosis.


Asunto(s)
Neoplasias de la Mama/patología , Colágeno/metabolismo , Matriz Extracelular/patología , Fenómenos Biomecánicos , Neoplasias de la Mama/metabolismo , Comunicación Celular/fisiología , Línea Celular Tumoral , Colágeno/química , Elasticidad , Humanos , Mecanorreceptores/fisiología , Microscopía Confocal , Análisis por Matrices de Proteínas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA