Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 106791, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403247

RESUMEN

DNA modifications add another layer of complexity to the eukaryotic genome to regulate gene expression, playing critical roles as epigenetic marks. In eukaryotes, the study of DNA epigenetic modifications has been confined to 5mC and its derivatives for decades. However, rapid developing approaches have witnessed the expansion of DNA modification reservoirs during the past several years, including the identification of 6mA, 5gmC, 4mC, and 4acC in diverse organisms. However, whether these DNA modifications function as epigenetic marks requires careful consideration. In this review, we try to present a panorama of all the DNA epigenetic modifications in eukaryotes, emphasizing recent breakthroughs in the identification of novel DNA modifications. The characterization of their roles in transcriptional regulation as potential epigenetic marks is summarized. More importantly, the pathways for generating or eliminating these DNA modifications, as well as the proteins involved are comprehensively dissected. Furthermore, we briefly discuss the potential challenges and perspectives, which should be taken into account while investigating novel DNA modifications.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Eucariontes , Humanos , Eucariontes/genética , Eucariontes/metabolismo , Animales , ADN/metabolismo , ADN/genética , ADN/química
2.
Genet Epidemiol ; 46(7): 446-462, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753057

RESUMEN

5-hydroxymethylcytosine (5hmC) is a methylation state linked with gene regulation, commonly found in cells of the central nervous system. 5hmC is associated with demethylation of cytosines from 5-methylcytosine (5mC) to the unmethylated state. The presence of 5hmC can be inferred by a paired experiment involving bisulfite and oxidation-bisulfite treatments on the same sample, followed by a methylation assay using a platform such as the Illumina Infinium MethylationEPIC BeadChip (EPIC). Existing methods for analysis of the resulting EPIC data are not ideal. Most approaches ignore the correlation between the two experiments and any imprecision associated with DNA damage from the additional treatment. Estimates of 5mC/5hmC levels free from these limitations are desirable to reveal associations between methylation states and phenotypes. We propose a hierarchical Bayesian method called Constrained HYdroxy Methylation Estimation (CHYME) to simultaneously estimate 5mC/5hmC signals as well as any associations between these signals and covariates or phenotypes, while accounting for the potential impact of DNA damage and dependencies induced by the experimental design. Simulations show that CHYME has valid type 1 error and better power than a range of alternative methods, including the popular OxyBS method and linear models on transformed proportions. Other methods we examined suffer from hugely inflated type 1 error for inference on 5hmC proportions. We use CHYME to explore genome-wide associations between 5mC/5hmC levels and cause of death in postmortem prefrontal cortex brain tissue samples. These analyses indicate that CHYME is a useful tool to reveal phenotypic associations with 5mC/5hmC levels.


Asunto(s)
Metilación de ADN , Modelos Genéticos , Teorema de Bayes , Citosina , Metilación de ADN/genética , Humanos , Fenotipo
3.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373453

RESUMEN

Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.


Asunto(s)
Daño del ADN , Reparación del ADN , Mutación , Metilación de ADN
4.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33361417

RESUMEN

Hepatitis B virus (HBV) transcription and replication increase progressively throughout postnatal liver development with maximal viral biosynthesis occurring at around 4 weeks of age in the HBV transgenic mouse model of chronic infection. Increasing viral biosynthesis is associated with a corresponding progressive loss of DNA methylation. The loss of DNA methylation is associated with increasing levels of 5-hydroxymethylcytosine (5hmC) residues which correlate with increased liver-enriched pioneer transcription factor Forkhead box protein A (FoxA) RNA levels, a rapid decline in postnatal liver DNA methyltransferase (Dnmt) transcripts, and a very modest reduction in ten-eleven translocation (Tet) methylcytosine dioxygenase expression. These observations are consistent with the suggestion that the balance between active HBV DNA methylation and demethylation is regulated by FoxA recruitment of Tet in the presence of declining Dnmt activity. These changes lead to demethylation of the viral genome during hepatocyte maturation with associated increases in viral biosynthesis. Consequently, manipulation of the relative activities of these two counterbalancing processes might permit the specific silencing of HBV gene expression with the loss of viral biosynthesis and the resolution of chronic HBV infections.IMPORTANCE HBV biosynthesis begins at birth and increases during early postnatal liver development in the HBV transgenic mouse model of chronic infection. The levels of viral RNA and DNA synthesis correlate with pioneer transcription factor FoxA transcript plus Tet methylcytosine dioxygenase-generated 5hmC abundance but inversely with Dnmt transcript levels and HBV DNA methylation. Together, these findings suggest that HBV DNA methylation during neonatal liver development is actively modulated by the relative contributions of FoxA-recruited Tet-mediated DNA demethylation and Dnmt-mediated DNA methylation activities. This mode of gene regulation, mediated by the loss of DNA methylation at hepatocyte-specific viral and cellular promoters, likely contributes to hepatocyte maturation during liver development in addition to the postnatal activation of HBV transcription and replication.


Asunto(s)
ADN Viral/metabolismo , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/virología , Hígado/crecimiento & desarrollo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Animales Recién Nacidos , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Replicación del ADN , ADN Viral/biosíntesis , Desmetilación , Dioxigenasas/genética , Dioxigenasas/metabolismo , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Regulación Viral de la Expresión Génica , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/patología , Factores Nucleares del Hepatocito/genética , Factores Nucleares del Hepatocito/metabolismo , Hígado/metabolismo , Hígado/virología , Ratones , Ratones Transgénicos , ARN Viral/biosíntesis , Replicación Viral
5.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143364

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a widespread hepatic disorder in the United States and other Westernized countries. Nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD, can progress to end-stage liver disease, including cirrhosis and liver cancer. Poor understanding of mechanisms underlying NAFLD progression from simple steatosis to NASH has limited the development of effective therapies and biomarkers. An accumulating body of studies has suggested the importance of DNA methylation, which plays pivotal roles in NAFLD pathogenesis. DNA methylation signatures that can affect gene expression are influenced by environmental and lifestyle experiences such as diet, obesity, and physical activity and are reversible. Hence, DNA methylation signatures and modifiers in NAFLD may provide the basis for developing biomarkers indicating the onset and progression of NAFLD and therapeutics for NAFLD. Herein, we review an update on the recent findings in DNA methylation signatures and their roles in the pathogenesis of NAFLD and broaden people's perspectives on potential DNA methylation-related treatments and biomarkers for NAFLD.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Progresión de la Enfermedad , Humanos
6.
Front Mol Neurosci ; 17: 1463437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268252

RESUMEN

Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.

7.
Neuropsychopharmacol Rep ; 44(1): 250-255, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38058257

RESUMEN

Quantifying cytosine modifications in various brain regions provides important insights into the gene expression regulation and pathophysiology of neuropsychiatric disorders. In this study, we quantified 5-methylcytosine (5-mC), 5-hydroxymethylation (5-hmC), and 5-formylcytosine (5-fC) levels in five brain regions (the frontal lobe, cerebral cortical region without frontal lobe, hippocampus, basal ganglia, and the cerebellum) and the heart at three developmental periods (12, 48, and 101 weeks). We observed significant regional variations in cytosine modification. Notably, regional variations were generally maintained throughout development, suggesting that epigenetic regulation is unique to each brain region and remains relatively stable with age. The 5-mC and 5-hmC levels were positively correlated, although the extent of the correlations seemed to differ in different brain regions. On the contrary, 5-fC levels did not correlate with 5-mC or 5-hmC levels. Additionally, we observed an age-dependent decrease in 5-fC levels in the basal ganglia, suggesting a unique epigenetic regulation mechanism. Further high-resolution studies using animal models of neuropsychiatric disorders as well as postmortem brain evaluation are warranted.


Asunto(s)
Citosina , Epigénesis Genética , Animales , Ratones , Citosina/metabolismo , 5-Metilcitosina/metabolismo , Encéfalo/metabolismo , Cerebelo/metabolismo
8.
G3 (Bethesda) ; 13(8)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37228107

RESUMEN

Stress is adverse experience that require constant adaptation to reduce the emotional and physiological burden, or "allostatic load", of an individual. Despite their everyday occurrence, a subpopulation of individuals is more susceptible to stressors, while others remain resilient with unknown molecular signatures. In this study, we investigated the contribution of the DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), underlying the individual differences in stress susceptibility and resilience. Genome-wide 5mC and 5hmC profiles from 3- and 6-month adult male mice that underwent various durations of social defeat were generated. In 3-month animals, 5mC and 5hmC work in parallel and do not distinguish between stress-susceptible and resilient phenotypes, while in 6-month animals, 5mC and 5hmC show distinct enrichment patterns. Acute stress responses may epigenetically "prime" the animals to either increase or decrease their predisposition to depression susceptibility. In support of this, re-exposure studies reveal that the enduring effects of social defeat affect differential biological processes between susceptible and resilient animals. Finally, the stress-induced 5mC and 5hmC fluctuations across the acute-chronic-longitudinal time course demonstrate that the negative outcomes of chronic stress do not discriminate between susceptible and resilient animals. However, resilience is more associated with neuroprotective processes while susceptibility is linked to neurodegenerative processes. Furthermore, 5mC appears to be responsible for acute stress response, whereas 5hmC may function as a persistent and stable modification in response to stress. Our study broadens the scope of previous research offering a comprehensive analysis of the role of DNA modifications in stress-induced depression.


Asunto(s)
Encéfalo , Derrota Social , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Estrés Fisiológico , Metilación de ADN , Hidroxilación , ADN/metabolismo , Epigenómica
9.
Cells ; 12(24)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38132145

RESUMEN

Keratinocytes are one of the primary cells affected by psoriasis inflammation. Our study aimed to delve deeper into their morphology, transcriptome, and epigenome changes in response to psoriasis-like inflammation. We created a novel cytokine mixture to mimic mild and severe psoriasis-like inflammatory conditions in cultured keratinocytes. Upon induction of inflammation, we observed that the keratinocytes exhibited a mesenchymal-like phenotype, further confirmed by increased VIM mRNA expression and results obtained from confocal microscopy. We performed RNA sequencing to achieve a more global view, revealing 858 and 6987 DEGs in mildly and severely inflamed keratinocytes, respectively. Surprisingly, we found that the transcriptome of mildly inflamed keratinocytes more closely mimicked that of the psoriatic epidermis transcriptome than the severely inflamed keratinocytes. Genes involved in the IL-17 pathway were a major contributor to the similarities of the transcriptomes between mildly inflamed KCs and psoriatic epidermis. Mild and severe inflammation led to the gene regulation of epigenetic modifiers such as HATs, HDACs, DNMTs, and TETs. Immunofluorescence staining revealed distinct 5-hmC patterns in inflamed versus control keratinocytes, and consistently low 5-mC intensity in both groups. However, the global DNA methylation assay detected a tendency of decreased 5-mC levels in inflamed keratinocytes versus controls. This study emphasizes how inflammation severity affects the transcriptomic similarity of keratinocytes to psoriatic epidermis and proves dynamic epigenetic regulation and adaptive morphological changes in inflamed keratinocytes.


Asunto(s)
Psoriasis , Transcriptoma , Humanos , Transcriptoma/genética , Epigénesis Genética , Queratinocitos/metabolismo , Epidermis/metabolismo , Psoriasis/genética , Psoriasis/metabolismo , Inflamación/genética , Inflamación/metabolismo
10.
Front Endocrinol (Lausanne) ; 13: 1059120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726473

RESUMEN

Background: There is growing interest in the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in brain disorders characterized by mitochondrial dysfunction. Here, we present a novel approach to interrogate the mitochondrial DNA methylome at single base resolution using targeted bisulfite sequencing. We applied this method to investigate mitochondrial DNA methylation patterns in post-mortem superior temporal gyrus and cerebellum brain tissue from seven human donors. Results: We show that mitochondrial DNA methylation patterns are relatively low but conserved, with peaks in DNA methylation at several sites, such as within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, predominantly in a non-CpG context. The elevated DNA methylation we observe in the D-LOOP we validate using pyrosequencing. We identify loci that show differential DNA methylation patterns associated with age, sex and brain region. Finally, we replicate previously reported differentially methylated regions between brain regions from a methylated DNA immunoprecipitation sequencing study. Conclusions: We have annotated patterns of DNA methylation at single base resolution across the mitochondrial genome in human brain samples. Looking to the future this approach could be utilized to investigate the role of mitochondrial epigenetic mechanisms in disorders that display mitochondrial dysfunction.


Asunto(s)
Metilación de ADN , ADN Mitocondrial , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Encéfalo , Genes Mitocondriales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA