Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Toxicol ; 98(10): 3289-3298, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38955864

RESUMEN

Many fatal intoxications have been reported in connection with the consumption of newer, highly potent synthetic cannabinoids. Yet, a possible postmortem redistribution (PMR) might complicate reliable interpretation of analytical results. Thus, it is necessary to investigate the PMR-potential of new synthetic cannabinoids. The pig model has already proven to be suitable for this purpose. Hence, the aim of this study was to study the PMR of the synthetic cannabinoid 5F-MDMB-P7AICA and its main metabolite 5F-MDMB-P7AICA-dimethylbutanoic acid (DBA). 5F-MDMB-P7AICA (200 µg/kg body weight) was administered by inhalation to anesthetized and ventilated pigs. At the end of the experiment, the animals were euthanized and stored at room temperature for 3 days. Tissue and body fluid samples were taken daily. Specimens were analyzed after solid phase extraction using a standard addition method and LC-MS/MS, blood was quantified after protein precipitation using a validated method. In perimortem samples, 5F-MDMB-P7AICA was found mainly in adipose tissue, bile fluid, and duodenum contents. Small amounts of 5F-MDMB-P7AICA were found in blood, muscle, brain, liver, and lung. High concentrations of DBA were found primarily in bile fluid, duodenum contents, urine, and kidney/perirenal fat tissue. In the remaining tissues, rather low amounts could be found. In comparison to older synthetic cannabinoids, PMR of 5F-MDMB-P7AICA was less pronounced. Concentrations in blood also appear to remain relatively stable at a low level postmortem. Muscle, kidney, fat, and duodenum content are suitable alternative matrices for the detection of 5F-MDMB-P7AICA and DBA, if blood specimens are not available. In conclusion, concentrations of 5F-MDMB-P7AICA and its main metabolite DBA are not relevantly affected by PMR.


Asunto(s)
Líquidos Corporales , Cannabinoides , Cambios Post Mortem , Animales , Cannabinoides/farmacocinética , Cannabinoides/administración & dosificación , Porcinos , Distribución Tisular , Líquidos Corporales/química , Líquidos Corporales/metabolismo , Administración por Inhalación , Espectrometría de Masas en Tándem , Masculino , Indoles/farmacocinética , Indoles/administración & dosificación , Indoles/sangre , Bilis/metabolismo , Bilis/química , Femenino , Tejido Adiposo/metabolismo , Cromatografía Liquida , Pulmón/metabolismo , Pulmón/efectos de los fármacos
2.
Chemistry ; 29(16): e202203718, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36511941

RESUMEN

Multiple spectroscopic techniques, along with single-crystal X-ray analysis, have been used to reveal the detailed structural and electronic information on reaction intermediates of a new copper(II)-DBU catalytic system for the N-arylation of 7-Azaindole. The reaction mixture of Chan-Lam cross-coupling yields two dimeric copper(II)-7-azaindole complexes, including one attached with DBU, prior to adding arylboronic acid and are confirmed structurally and spectroscopically. A suitable mechanism has been proposed using the dimeric copper(II) complex as a catalyst for the coupling reactions. The role of DBU as a base and also as an auxiliary ligand in the course of the reaction has been established. The transmetalated monomeric aryl-copper(II) species generated from the dimeric unit is oxidized by another equivalent of copper(II) to yield an aryl-copper(III) intermediate for facile N-arylation, which has been authenticated with UV-vis spectroscopy. The regeneration of the copper(II)-catalyst by aerial oxidation of colorless copper(I) species (generated via reductive elimination and disproportionation step) is confirmed by mass and absorption spectroscopy. Detailed DFT and TD-DFT calculations help to rationalize the proposed reaction intermediates and their corresponding electronic transitions. Moreover, the confirmation of copper(I)-7-azaindole intermediate via HRMS reaffirmed the involvement of Cu(II)/Cu(III)/Cu(I) species in the Chan-Lam type of coupling. A medicinally-important 7-azaindole-based SHP2 inhibitor has been synthesized via sequential arylation.

3.
Bioorg Med Chem ; 95: 117503, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37862935

RESUMEN

The extracellular signal-regulated kinase 5 (Erk5) signaling plays a crucial role in cancer, and regulating its activity may have potential in cancer chemotherapy. In this study, a series of novel 7-azaindole derivatives (4a-5o) were designed and synthesized. Their antitumor activities on human lung cancer A549 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4',6-diamidino-2-phenylindole (DAPI) staining and colony formation assay. Among them, compounds 4a, 4 h, 5d and 5j exhibited good anti-proliferative activity with the IC50 values of 6.23 µg/mL, 8.52 µg/mL, 7.33 µg/mL and 4.56 µg/mL, respectively, equivalent to Erk5 positive control XMD8-92 (IC50 = 5.36 µg/mL). The results of structure-activity relationships (SAR) showed that double bond on the piperidine ring and N atoms at the N7 position of 7-azaindole was essential for their antiproliferative activity. Furthermore, compounds 4a and 5j exhibited good inhibition on Erk5 kinase through Western blot analysis and possible action site of compounds with Erk5 kinase was elucidated by molecular docking.


Asunto(s)
Antineoplásicos , Proteína Quinasa 7 Activada por Mitógenos , Humanos , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Proliferación Celular , Relación Estructura-Actividad , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Estructura Molecular
4.
Bioorg Chem ; 133: 106430, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36812828

RESUMEN

In search of new-structure compounds with good anticonvulsant activity and low neurotoxicity, a series of 3-(1,2,3,6-tetrahydropyridine)-7-azaindole derivatives was designed and synthesized. Their anticonvulsant activities were evaluated by maximal electroshock (MES) and pentylenetetrazole (PTZ) test, and neurotoxicity was determined by the rotary rod method. In the PTZ-induced epilepsy model, compounds 4i, 4p and 5 k showed significant anticonvulsant activities with ED50 values at 30.55 mg/kg, 19.72 mg/kg and 25.46 mg/kg, respectively. However, these compounds did not show any anticonvulsant activity in the MES model. More importantly, these compounds have lower neurotoxicity with protective index (PI = TD50/ED50) values at 8.58, 10.29 and 7.41, respectively. In order to obtain a clearer structure-activity relationship, more compounds were designed rationally based on 4i, 4p and 5 k and their anticonvulsant activities were evaluated on PTZ models. The results demonstrated that the N-atom at the 7-position of the 7-azaindole and the double-bond in the 1,2,3,6-tetrahydropyridine skeleton was essential for antiepileptic activities.


Asunto(s)
Anticonvulsivantes , Indoles , Convulsiones , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/química , Electrochoque , Indoles/uso terapéutico , Pentilenotetrazol , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Relación Estructura-Actividad , Ratones , Animales
5.
Mol Divers ; 26(4): 2211-2220, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34741275

RESUMEN

In a pilot study, eleven pyrrolopyridine and pyrrolopyrimidine derivatives (specifically, 7-azaindole and 7-deazapurine derivatives) were synthesised by Suzuki cross-coupling reactions and evaluated via radioligand binding assays as potential adenosine receptor (AR) antagonists in order to further investigate the structure-activity relationships of these compounds. 6-Chloro-4-phenyl-1H-pyrrolo[2,3-b]pyridine, with a 7-azaindole scaffold, was identified as a selective A1 AR antagonist with a rA1Ki value of 0.16 µM, and interestingly, the addition of a N-atom to the aforementioned fused heterocyclic ring system, creating corresponding 7-deazapurines, led to a dual A1/A2A AR ligand (2-chloro-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine: rA1Ki: 0.19 ± 0.02 µM; rA2AKi: 0.43 ± 0.01 µM). Introducing an additional N-atom into the heterocyclic ring system was tolerable for rA1 AR affinity and also led to rA2A AR affinity. This pilot study concluded that new 7-azaindole and 7-deazapurine derivatives represent interesting scaffolds for design of A1 and/or A2A AR antagonists.


Asunto(s)
Enfermedades Neurodegenerativas , Receptor de Adenosina A2A , Humanos , Estructura Molecular , Proyectos Piloto , Pirroles/farmacología , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/metabolismo , Relación Estructura-Actividad
6.
Chem Biodivers ; 19(10): e202200692, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36082623

RESUMEN

In this work, a series of 7-azaindole analogs were designed by the bioisosteric principle based on the pharmacodynamic parent nucleus. Moreover, 5-[(5-chloro-1H-pyrrolo[2,3-b]pyridin-3-yl)methyl]-N-{[6-(trifluoromethyl)pyridin-3-yl]methyl}pyrimidin-2-amine (compound P1) with the strongest interaction with colony-stimulating factor 1 receptor (CSF-1R) was screened by molecular docking. Compound P1 was successfully prepared by the six-step reaction with HPLC purity of 99.26 % and characterized by 1 H-NMR and ESI-MS spectra. In vitro bioactivity study showed that compound P1 appeared the cytotoxicity to MCF-7 and A549 cells, especially to HOS cells (IC50 =88.79±8.07 nM), while it had lower toxicity to normal L929 cells (IC50 =140.49±8.03 µM). In addition, compound P1 could induce HOS cell death by apoptosis and blocking the G0/G1 phase at nanomolar concentrations. The obtained results indicated that compound P1 might be a promising candidate compound for anticancer drug.


Asunto(s)
Antineoplásicos , Factor Estimulante de Colonias de Macrófagos , Simulación del Acoplamiento Molecular , Factor Estimulante de Colonias de Macrófagos/farmacología , Antineoplásicos/química , Aminas/farmacología , Relación Estructura-Actividad , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Línea Celular Tumoral
7.
Bioorg Med Chem Lett ; 33: 127721, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33259926

RESUMEN

Rho kinase (ROCK) inhibitors are of therapeutic value for the treatment of disorders such as hypertension and glaucoma, and potentially of wider use against diseases such as cancer and multiple sclerosis. We previously reported a series of potent and selective ROCK inhibitors based on a substituted 7-azaindole scaffold. Here we extend the SAR exploration of the 7-azaindole series to identify leads for further evaluation. New compounds such as 16, 17, 19, 21 and 22 showed excellent ROCK potency and protein kinase A (PKA) selectivity, combined with microsome and hepatocyte stability.


Asunto(s)
Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Ratas , Relación Estructura-Actividad , Quinasas Asociadas a rho/metabolismo
8.
Bioorg Med Chem Lett ; 53: 128418, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715306

RESUMEN

NIMA-related protein kinase Nek1 is crucially involved in cell cycle regulation, DNA repair and microtubule regulation and dysfunctions of Nek1 play key roles in amyotrophic lateral sclerosis (ALS), polycystic kidney disease (PKD) and several types of radiotherapy resistant cancer. Targeting of Nek1 could reveal a new class of radiosensitizing substances and provide useful tools to better understand the aforementioned diseases. In this report we explore substituted aminopyrazoles and 7-azaindoles as potent inhibitors for the Nek1 kinase domain and examine their effect on kidney organogenesis in Danio rerio.


Asunto(s)
Diseño de Fármacos , Indoles/farmacología , Riñón/efectos de los fármacos , Quinasa 1 Relacionada con NIMA/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Animales , Relación Dosis-Respuesta a Droga , Indoles/síntesis química , Indoles/química , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Estructura Molecular , Quinasa 1 Relacionada con NIMA/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Pez Cebra
9.
Molecules ; 26(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34684895

RESUMEN

Five protocols were first compared for the copper-catalyzed C-N bond formation between 7-azaindole and aryl/heteroaryl iodides/bromides. The 1-arylated 7-azaindoles thus obtained were subjected to deprotometalation-iodolysis sequences using lithium 2,2,6,6-tetramethylpiperidide as the base and the corresponding zinc diamide as an in situ trap. The reactivity of the substrate was discussed in light of the calculated atomic charges and the pKa values. The behavior of the 1-arylated 7-azaindoles in direct iodination was then studied, and the results explained by considering the HOMO orbital coefficients and the atomic charges. Finally, some of the iodides generated, generally original, were involved in the N-arylation of indole. While crystallographic data were collected for fifteen of the synthesized compounds, biological properties (antimicrobial, antifungal and antioxidant activity) were evaluated for others.

10.
Angew Chem Int Ed Engl ; 60(4): 1782-1788, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33146444

RESUMEN

The synthesis of a novel expanded π-conjugated system, namely benzotri(7-azaindole), BTAI, is reported. Its C3h symmetry along with the integration of six complementary donor and acceptor N-H⋅⋅⋅N hydrogen bonds in the conjugated structure promote the 2D self-assembly on Au(111) over extended areas. Besides, a perfect commensurability with the gold lattice endows the physisorbed molecular film with a remarkable stability. The structural features of BTAI result in two levels of surface chirality: Firstly, the molecules become chiral upon adsorption on the surface. Then, due to the favorable N-H⋅⋅⋅N hydrogen bond-directed self-assembly, along with the relative molecular rotation with respect to the substrate, supramolecular chirality manifests in two mirror enantiomorphous domains. Thus, the system undergoes spontaneous chiral resolution. LEED and STM assisted by theoretical simulations have been employed to characterize in detail these novel 2D conglomerates with relevant chiral properties for systems with C3h symmetry.

11.
Bioorg Med Chem ; 28(11): 115468, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32284225

RESUMEN

Protein kinases are important drug targets, especially in the area of oncology. This paper reports the synthesis and biological evaluation of new 7-azaindole derivatives bearing benzocycloalkanone motifs as potential protein kinase inhibitors. Four compounds 8g, 8h, 8i, and 8l were discovered to inhibit cyclin-dependent kinase 9 (CDK9/CyclinT) and/or Haspin kinase in the micromolar to nanomolar range. 8l was identified as the most potent Haspin inhibitor (IC50 = 14 nM), while 8g and 8h acted as dual inhibitors of CDK9/CyclinT and Haspin. These novel compounds constitute a promising starting point for the discovery of dual protein kinase inhibitors that have potential to be developed as anticancer agents, since both CDK9/CyclinT and Haspin are considered to be drug targets in oncology.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Indoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Cetonas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cetonas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Relación Estructura-Actividad
12.
Molecules ; 24(19)2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31590280

RESUMEN

By direct coupling 7-azaindole and cyclic imines, such as 3,4-dihydroisoquinoline, 6,7-dihydrothieno[3,2-c]pyridine, 3,4-dihydro-ß-carboline, and 4,5-dihydro-3H-benz[c]azepine, new 3-substituted 7-azaindole derivatives have been synthesized. The reaction was extended to 4-azaindoles and 6-azaindoles, as electron-rich aromatic compounds. The lowest reactivity was observed in the case of C-3 substitution of 5-azaindole. In this case, the aza-Friedel-Crafts reaction took place by using 10 mol % of p-toluenesulfonic acid (p-TSA) as the catalyst. The role of the acid catalyst can be explained by the different pKa values of the azaindoles. All reactions were performed in solvent-free conditions by using both classical heating and microwave irradiation. In all cases, microwave heating proved to be more convenient to synthesize new C-3-substituted azaindole derivatives.


Asunto(s)
Iminas/química , Indoles/síntesis química , Catálisis , Indoles/química , Microondas , Estructura Molecular , Estereoisomerismo
13.
Bioorg Med Chem Lett ; 28(15): 2622-2626, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30082069

RESUMEN

Rho kinase (ROCK) inhibitors are potential therapeutic agents for the treatment of a variety of disorders including hypertension, glaucoma and erectile dysfunction. Here we disclose a series of potent and selective ROCK inhibitors based on a substituted 7-azaindole scaffold. Substitution of the 3-position of 7-azaindole led to compounds such as 37, which possess excellent ROCK inhibitory potency and high selectivity against the closely related kinase PKA.


Asunto(s)
Diseño de Fármacos , Indoles/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Cristalografía por Rayos X , Ligandos , Inhibidores de Proteínas Quinasas/síntesis química , Solubilidad , Relación Estructura-Actividad
14.
Bioorg Med Chem Lett ; 27(4): 862-866, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28094183

RESUMEN

AXL is a receptor tyrosine kinase that plays a key role in tumor growth and proliferation. The scientific community has validated AXL as therapeutic target in the treatment of cancers for several years now, and several AXL inhibitors have been developed but none of them are approved. In this context, we started to design new kinase inhibitors targeting AXL from the 7-azaindole scaffold well known to interact with the ATP binding site of the kinase. Focused screening and chemical diversification around 7-azaindole scaffold were developed, based on modeling studies and medicinal chemistry rational, leading to the discovery of a new family of hits with potent inhibitory activity against AXL.


Asunto(s)
Indoles/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina Quinasa del Receptor Axl
15.
Bioorg Med Chem Lett ; 26(23): 5669-5673, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27815120

RESUMEN

Glycogen synthase kinase-3 beta (GSK3ß) kinase serves as a promising therapeutic target for the treatment of various human diseases, such as diabetes, obesity, and Alzheimer's disease. In this study, we report lead GSK3ß inhibitors identified using a fragment-linking strategy. Through the systematic exploration, a six-atom chain unit bearing the rigid double bond was found to be a suitable linker connecting two fragments, which enables favorable contacts with backbone groups of residues in the pockets. As a consequence, potent GSK3ß inhibitor 9i was found with IC50 values of 19nM. The binding mode analysis indicates that the activities of the inhibitors appear to be achieved by the establishment of multiple hydrogen bonds and hydrophobic interactions in the ATP-binding site of GSK3ß. The good biochemical potencies and structural uniqueness of the inhibitors support consideration in the further study to optimize the biological activity.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Indoles/química , Indoles/farmacología , Diseño de Fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
16.
Int J Mol Sci ; 17(12)2016 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-27973440

RESUMEN

A series of gold(I) complexes of the general composition [Au(naza)(PPh3)] (1-8) was prepared and thoroughly characterized (e.g., electrospray ionization (ESI) mass spectrometry and multinuclear nuclear magnetic resonance (NMR) spectroscopy). The N1-deprotonated anions of 7-azaindole or its derivatives (naza) are coordinated to the metal centre through the N1 atom of their pyrrole ring, as proved by a single crystal X-ray analysis of the complexes [Au(3I5Braza)(PPh3)] (7) and [Au(2Me4Claza)(PPh3)]·½H2O (8'). The in vitrocytotoxicity of the complexes 1-8 was studied against both the cisplatin-sensitive and -resistant variants of the A2780 human ovarian carcinoma cell line, as well as against the MRC-5 human normal fibroblast cell line. The complexes 4, 5, and 8, containing deprotonated 3-iodo-7-azaindole, 5-bromo-7-azaindole, and 2-methyl-4-chloro-7-azaindole (2Me4Claza), respectively, showed significantly higher potency (IC50 = 2.8-3.5 µM) than cisplatin (IC50 = 20.3 µM) against the A2780 cells and markedly lower effect towards the MRC-5 non-cancerous cells (IC50 = 26.0-29.2 µM), as compared with the mentioned A2780 cancer cells. The results of the flow cytometric studies of the A2780 cell cycle perturbations revealed a G2-cell cycle phase arrest of the cells treated by the representative complexes 1 and 5, which is indicative of a different mechanism of action from cisplatin (induced S-cell cycle phase arrest). The stability of the representative complex 8 in the water-containing solution as well as its ability to interact with the reduced glutathione, cysteine and bovine serum albumin was also studied using ¹H and 31P-NMR spectroscopy (studied in the 50% DMF-d7/50% D2O mixture) and ESI+ mass spectrometry (studied in the 50% DMF/50% H2O mixture); DMF = dimethylformamide. The obtained results are indicative for the release of the N-donor azaindole-based ligand in the presence of the used biomolecules.


Asunto(s)
Antineoplásicos/farmacología , Oro/farmacología , Indoles/farmacología , Fosfinas/farmacología , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Cristalografía por Rayos X , Humanos , Indoles/síntesis química , Indoles/química , Fosfinas/síntesis química , Fosfinas/química , Espectroscopía de Protones por Resonancia Magnética , Agua/química
17.
Chemphyschem ; 15(1): 109-17, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24254956

RESUMEN

The C-H···Y (Y=hydrogen-bond acceptor) interactions are somewhat unconventional in the context of hydrogen-bonding interactions. Typical C-H stretching frequency shifts in the hydrogen-bond donor C-H group are not only small, that is, of the order of a few tens of cm(-1) , but also bidirectional, that is, they can be red or blue shifted depending on the hydrogen-bond acceptor. In this work we examine the C-H···N interaction in complexes of 7-azaindole with CHCl3 and CHF3 that are prepared in the gas phase through supersonic jet expansion using the fluorescence depletion by infra-red (FDIR) method. Although the hydrogen-bond acceptor, 7-azaindole, has multiple sites of interaction, it is found that the C-H···N hydrogen-bonding interaction prevails over the others. The electronic excitation spectra suggest that both complexes are more stabilized in the S1 state than in the S0 state. The C-H stretching frequency is found to be red shifted by 82 cm(-1) in the CHCl3 complex, which is the largest redshift reported so far in gas-phase investigations of 1:1 haloform complexes with various substrates. In the CHF3 complex the observed C-H frequency is blue shifted by 4 cm(-1). This is at variance with the frequency shifts that are predicted using several computational methods; these predict at best a redshift of 8.5 cm(-1). This discrepancy is analogous to that reported for the pyridine-CHF3 complex [W. A. Herrebout, S. M. Melikova, S. N. Delanoye, K. S. Rutkowski, D. N. Shchepkin, B. J. van der Veken, J. Phys. Chem. A- 2005, 109, 3038], in which the blueshift is termed a pseudo blueshift and is shown to be due to the shifting of levels caused by Fermi resonance between the overtones of the C-H bending and stretching modes. The dissociation energies, (D0), of the CHCl3 and CHF3 complexes are computed (MP2/aug-cc-pVDZ level) as 6.46 and 5.06 kcal mol(-1), respectively.


Asunto(s)
Hidrógeno/química , Indoles/química , Gases/química , Enlace de Hidrógeno
18.
Chem Asian J ; 19(6): e202300987, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38258444

RESUMEN

An efficient and practical method for the N-alkynylation of 7-azaindoles has been established by using CuI/DMAP catalytic system at room temperature and in open air. This simple protocol has been successfully employed in the synthesis of a wide range of N-alkynylated 7-azaindoles with good yields. Also, this approach is well-suited for large-scale N-alkynylation reactions. The designed N-alkynylated 7-azaindoles were further subjected to Cu-/Ir-catalyzed alkyne-azide cycloaddition (CuAAC/IrAAC) or "click" reaction for the rapid synthesis of 1,4-/1,5 disubstituted 1,2,3-triazole decorated 7-azaindoles. A mechanistic study based on density functional theory (DFT) calculations and ultraviolet-visible (UV) spectroscopic studies revealed that the CuI and DMAP combination formed a [CuII(DMAP)2I2] species, which acts as an active catalyst. The DFT method was used to assess the energetic viability of an organometallic in the C-N bond formation pathway originating from the [CuII(DMAP)2I2] complex. We expect that the newly designed Cu/DMAP/alkyne system will offer valuable insights into the field of Cu-catalyzed transformations.

19.
Eur J Med Chem ; 277: 116768, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163780

RESUMEN

Influenza viruses that cause seasonal and pandemic flu are a permanent health threat. The surface glycoprotein, neuraminidase, is crucial for the infectivity of the virus and therefore an attractive target for flu drug discovery campaigns. We have designed and synthesized more than 40 3-indolinone derivatives. We mainly investigated the role of substituents at the 2 position of the core as well as the introduction of substituents or a nitrogen atom in the fused phenyl ring of the core for inhibition of influenza virus neuraminidase activity and replication in vitro and in vivo. After evaluating the compounds for their ability to inhibit the viral neuraminidase, six potent inhibitors 3c, 3e, 7c, 12o, 12v, 18d were progressed to evaluate for cytotoxicity and inhibition of influenza virus A/PR/8/34 replication in in MDCK cells. Two hit compounds 3e and 12o were tested in an animal model of influenza virus infection. Molecular mechanism of the 3-indolinone derivatives interactions with the neuraminidase was revealed in molecular dynamic simulations. Proposed inhibitors bind to the 430-cavity that is different from the conventional binding site of commercial compounds. The most promising 3-indolinone inhibitors demonstrate stronger interactions with the neuraminidase in molecular models that supports proposed binding site.


Asunto(s)
Antivirales , Inhibidores Enzimáticos , Indoles , Neuraminidasa , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Indoles/farmacología , Indoles/química , Indoles/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Animales , Perros , Relación Estructura-Actividad , Células de Riñón Canino Madin Darby , Estructura Molecular , Modelos Moleculares , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Relación Dosis-Respuesta a Droga , Química Farmacéutica , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Replicación Viral/efectos de los fármacos
20.
ChemMedChem ; : e202400451, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155530

RESUMEN

Herein, we report design, synthesis and characterization of a new library of 7-azaindole N-ethyl linked 1,2,3-triazoles containing ethylene as a spacer unit, and evaluation of all the synthesized compounds for their antimicrobial properties. Antibacterial potential was checked against two Gram positive (B. subtilis and S. aureus) and two Gram negative (E. coli and P. aeruginosa) bacterial strains while antifungal potential was assayed against two fungal strains (C. albicans and A. niger). All the tested compounds showed satisfactory antibacterial potency in comparison to reference drug ciprofloxacin with MIC values ranging from 0.0108 to 0.0432 µmol/mL. Interestingly, except two, all the target compounds showed better antifungal property as compared to the reference drug fluconazole with MIC values less than 0.0408 µmol/mL. One of the compounds exhibited two-fold better antifungal potential in comparison to fluconazole. Furthermore, in-silico ADMET and DFT studies reported drug likeness behavior and chemical reactivity parameters, respectively. The cytotoxicity results on substrate azide 3 and most potent 1,2,3-triazoles (5d and 5l) were found to be non-toxic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA