Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(1): 117-130.e6, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31101499

RESUMEN

Telomeres are essential for genome stability. Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere shortening. Although telomeres are hypersensitive to ROS-mediated 8-oxoguanine (8-oxoG) formation, the biological effect of this common lesion at telomeres is poorly understood because ROS have pleiotropic effects. Here we developed a chemoptogenetic tool that selectively produces 8-oxoG only at telomeres. Acute telomeric 8-oxoG formation increased telomere fragility in cells lacking OGG1, the enzyme that removes 8-oxoG, but did not compromise cell survival. However, chronic telomeric 8-oxoG induction over time shortens telomeres and impairs cell growth. Accumulation of telomeric 8-oxoG in chronically exposed OGG1-deficient cells triggers replication stress, as evidenced by mitotic DNA synthesis at telomeres, and significantly increases telomere losses. These losses generate chromosome fusions, leading to chromatin bridges and micronucleus formation upon cell division. By confining base damage to the telomeres, we show that telomeric 8-oxoG accumulation directly drives telomere crisis.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , ADN Glicosilasas/genética , Reparación del ADN/efectos de la radiación , Inestabilidad Genómica/efectos de la radiación , Guanina/análogos & derivados , Telómero/efectos de la radiación , División Celular/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Daño del ADN , ADN Glicosilasas/deficiencia , Replicación del ADN/efectos de la radiación , Expresión Génica , Guanina/agonistas , Guanina/biosíntesis , Células HeLa , Humanos , Luz/efectos adversos , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Optogenética , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Oxígeno Singlete/agonistas , Oxígeno Singlete/metabolismo , Telómero/metabolismo , Homeostasis del Telómero/efectos de la radiación
2.
Trends Biochem Sci ; 46(3): 175-183, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33077363

RESUMEN

The leading cause of mutation due to oxidative damage is 8-oxo-2'-deoxyguanosine (8-oxoG) mispairing with adenine (Ade), which can occur in two ways. First, guanine of a G:C DNA base pair can be oxidized. If not repaired in time, DNA polymerases can mispair Ade with 8-oxoG in the template. This 8-oxoG:A can be repaired by enzymes that remove Ade opposite to template 8-oxoG, or 8-oxoG opposite to Cyt. Second, free 8-oxo-dGTP can be misincorporated by DNA polymerases into DNA opposite template Ade. However, there is no known repair activity that removes 8-oxoG opposite to template Ade. We suggest that a major role of N6-methyladenine in mammalian DNA is minimizing incorporation of 8-oxoG opposite to Ade by DNA polymerases following adduct formation.


Asunto(s)
Reparación del ADN , Guanina , Animales , Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo
3.
J Biol Chem ; 300(10): 107755, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260691

RESUMEN

Formycin A (FOR) and pyrazofurin A (PYR) are nucleoside analogs with antiviral and antitumor properties. They are known to interfere with nucleic acid metabolism, but their direct effect on transcription is less understood. We explored how RNA polymerases (RNAPs) from bacteria, mitochondria, and viruses utilize FOR, PYR, and oxidized purine nucleotides. All tested polymerases incorporated FOR in place of adenine and PYR in place of uridine. FOR also exhibited surprising dual-coding behavior, functioning as a cytosine substitute, particularly for viral RNAP. In contrast, 8-oxoadenine and 8-oxoguanine were incorporated in place of uridine in addition to their canonical Watson-Crick codings. Our data suggest that the interconversion of canonical anti and alternative syn conformers underlies dual-coding abilities of FOR and oxidized purines. Structurally distinct RNAPs displayed varying abilities to utilize syn conformers during transcription. By examining base pairings that led to substrate incorporation and the entire spectrum of geometrically compatible pairings, we have gained new insights into the nucleobase selection processes employed by structurally diverse RNAPs. These insights may pave the way for advancements in antiviral therapies.

4.
Med Res Rev ; 44(6): 2825-2848, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39119702

RESUMEN

Oxidative DNA damage-related diseases, such as incurable inflammation, malignant tumors, and age-related disorders, present significant challenges in modern medicine due to their complex molecular mechanisms and limitations in identifying effective treatment targets. Recently, 8-oxoguanine DNA glycosylase 1 (OGG1) has emerged as a promising multifunctional therapeutic target for the treatment of these challenging diseases. In this review, we systematically summarize the multiple functions and mechanisms of OGG1, including pro-inflammatory, tumorigenic, and aging regulatory mechanisms. We also highlight the potential of OGG1 inhibitors and activators as potent therapeutic agents for the aforementioned life-limiting diseases. We conclude that OGG1 serves as a multifunctional hub; the inhibition of OGG1 may provide a novel approach for preventing and treating inflammation and cancer, and the activation of OGG1 could be a strategy for preventing age-related disorders. Furthermore, we provide an extensive overview of successful applications of OGG1 regulation in treating inflammatory, cancerous, and aging-related diseases. Finally, we discuss the current challenges and future directions of OGG1 as an emerging multifunctional therapeutic marker for the aforementioned challenging diseases. The aim of this review is to provide a robust reference for scientific researchers and clinical drug developers in the development of novel clinical targeted drugs for life-limiting diseases, especially for incurable inflammation, malignant tumors, and age-related disorders.


Asunto(s)
Daño del ADN , ADN Glicosilasas , Estrés Oxidativo , ADN Glicosilasas/metabolismo , ADN Glicosilasas/antagonistas & inhibidores , Humanos , Estrés Oxidativo/efectos de los fármacos , Animales , Neoplasias/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Envejecimiento/metabolismo , Terapia Molecular Dirigida
5.
J Biol Chem ; 299(11): 105308, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778730

RESUMEN

Nuclear factor kappa B (NF-κB) activity is regulated by various posttranslational modifications, of which Ser276 phosphorylation of RelA/p65 is particularly impacted by reactive oxygen species (ROS). This modification is responsible for selective upregulation of a subset of NF-κB targets; however, the precise mechanism remains elusive. ROS have the ability to modify cellular molecules including DNA. One of the most common oxidation products is 8-oxo-7,8-dihydroguanine (8-oxoGua), which is repaired by the 8-oxoguanine DNA glycosylase1 (OGG1)-initiated base excision repair pathway. Recently, a new function of OGG1 has been uncovered. OGG1 binds to 8-oxoGua, facilitating the occupancy of NF-κB at promoters and enhancing transcription of pro-inflammatory cytokines and chemokines. In the present study, we demonstrated that an interaction between DNA-bound OGG1 and mitogen-and stress-activated kinase 1 is crucial for RelA/p65 Ser276 phosphorylation. ROS scavenging or OGG1 depletion/inhibition hindered the interaction between mitogen-and stress-activated kinase 1 and RelA/p65, thereby decreasing the level of phospho-Ser276 and leading to significantly lowered expression of ROS-responsive cytokine/chemokine genes, but not that of Nfkbis. Blockade of OGG1 binding to DNA also prevented promoter recruitment of RelA/p65, Pol II, and p-RNAP II in a gene-specific manner. Collectively, the data presented offer new insights into how ROS signaling dictates NF-κB phosphorylation codes and how the promoter-situated substrate-bound OGG1 is exploited by aerobic mammalian cells for timely transcriptional activation of ROS-responsive genes.


Asunto(s)
ADN Glicosilasas , FN-kappa B , Animales , ADN/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Mamíferos/metabolismo , Mitógenos , FN-kappa B/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Humanos , Ratones , Línea Celular , Ratones Noqueados
6.
Infect Immun ; 92(4): e0000124, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38415639

RESUMEN

Attaching/effacing (A/E) pathogens induce DNA damage and colorectal cancer by injecting effector proteins into host cells via the type III secretion system (T3SS). EspF is one of the T3SS-dependent effector proteins exclusive to A/E pathogens, which include enterohemorrhagic Escherichia coli. The role of EspF in the induction of double-strand breaks (DSBs) and the phosphorylation of the repair protein SMC1 has been demonstrated previously. However, the process of damage accumulation and DSB formation has remained enigmatic, and the damage response is not well understood. Here, we first showed a compensatory increase in the mismatch repair proteins MutS homolog 2 (MSH2) and MSH6, as well as poly(ADP-ribose) polymerase 1, followed by a dramatic decrease, threatening cell survival in the presence of EspF. Flow cytometry revealed that EspF arrested the cell cycle at the G2/M phase to facilitate DNA repair. Subsequently, 8-oxoguanine (8-oxoG) lesions, a marker of oxidative damage, were assayed by ELISA and immunofluorescence, which revealed the accumulation of 8-oxoG from the cytosol to the nucleus. Furthermore, the status of single-stranded DNA (ssDNA) and DSBs was confirmed. We observed that EspF accelerated the course of DNA lesions, including 8-oxoG and unrepaired ssDNA, which were converted into DSBs; this was accompanied by the phosphorylation of replication protein A 32 in repair-defective cells. Collectively, these findings reveal that EspF triggers various types of oxidative DNA lesions with impairment of the DNA damage response and may result in genomic instability and cell death, offering novel insight into the tumorigenic potential of EspF.IMPORTANCEOxidative DNA lesions play causative roles in colitis-associated colon cancer. Accumulating evidence shows strong links between attaching/effacing (A/E) pathogens and colorectal cancer (CRC). EspF is one of many effector proteins exclusive to A/E pathogens with defined roles in the induction of oxidative stress, double-strand breaks (DSBs), and repair dysregulation. Here, we found that EspF promotes reactive oxygen species generation and 8-oxoguanine (8-oxoG) lesions when the repair system is activated, contributing to sustained cell survival. However, infected cells exposed to EspF presented 8-oxoG, which results in DSBs and ssDNA accumulation when the cell cycle is arrested at the G2/M phase and the repair system is defective or saturated by DNA lesions. In addition, we found that EspF could intensify the accumulation of nuclear DNA lesions through oxidative and replication stress. Overall, our work highlights the involvement of EspF in DNA lesions and DNA damage response, providing a novel avenue by which A/E pathogens may contribute to CRC.


Asunto(s)
Neoplasias Colorrectales , Escherichia coli Enterohemorrágica , Humanos , Células Epiteliales , Reparación del ADN , Daño del ADN , Estrés Oxidativo
7.
J Clin Immunol ; 44(7): 151, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896336

RESUMEN

A cell's ability to survive and to evade cancer is contingent on its ability to retain genomic integrity, which can be seriously compromised when nucleic acid phosphodiester bonds are disrupted. DNA Ligase 1 (LIG1) plays a key role in genome maintenance by sealing single-stranded nicks that are produced during DNA replication and repair. Autosomal recessive mutations in a limited number of individuals have been previously described for this gene. Here we report a homozygous LIG1 mutation (p.A624T), affecting a universally conserved residue, in a patient presenting with leukopenia, neutropenia, lymphopenia, pan-hypogammaglobulinemia, and diminished in vitro response to mitogen stimulation. Patient fibroblasts expressed normal levels of LIG1 protein but exhibited impaired growth, poor viability, high baseline levels of gamma-H2AX foci, and an enhanced susceptibility to DNA-damaging agents. The mutation reduced LIG1 activity by lowering its affinity for magnesium 2.5-fold. Remarkably, it also increased LIG1 fidelity > 50-fold against 3' end 8-Oxoguanine mismatches, exhibiting a marked reduction in its ability to process such nicks. This is expected to yield increased ss- and dsDNA breaks. Molecular dynamic simulations, and Residue Interaction Network studies, predicted an allosteric effect for this mutation on the protein loops associated with the LIG1 high-fidelity magnesium, as well as on DNA binding within the adenylation domain. These dual alterations of suppressed activity and enhanced fidelity, arising from a single mutation, underscore the mechanistic picture of how a LIG1 defect can lead to severe immunological disease.


Asunto(s)
ADN Ligasa (ATP) , Homocigoto , Mutación , Inmunodeficiencia Combinada Grave , Femenino , Humanos , Masculino , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , Fibroblastos , Simulación de Dinámica Molecular , Mutación/genética , Inmunodeficiencia Combinada Grave/genética , Lactante
8.
Biol Chem ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39272221

RESUMEN

The BCL11A transcription factor has previously been shown to interact with and stimulate the enzymatic activities of the NTHL1 DNA glycosylase and Pol ß polymerase. Here we show that BCL11A and a smaller peptide encompassing amino acids 160 to 520 can interact with the 8-oxoguanine DNA glycosylase, OGG1, increase the binding of OGG1 to DNA that contains an 8-oxoguanine base and stimulate the glycosylase activity of OGG1. Following BCL11A knockdown, we observed an increase in oxidized purines in the genome using comet assays, while immunoassays reveal an increase in 8-oxoG bases. Structure-function analysis indicates that the stimulation of OGG1 by BCL11A requires the zinc fingers 1, 2 and 3 as well as the proline-rich region between the first and second zing finger, but a glutamate-rich region downstream of zinc finger 3 is dispensable. Ectopic expression of a small peptide that contains the three zinc fingers can rescue the increase in 8-oxoguanine caused by BCL11A knockdown. These findings, together with previous results showing that BCL11A stimulates the enzymatic activities of NTHL1 and the Pol ß polymerase, suggest that high expression of BCL11A is important to protect cancer cells against oxidative DNA damage.

9.
J Am Acad Dermatol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39025264

RESUMEN

BACKGROUND: UV-A radiation contributes to photoaging/photocarcinogenesis by generating inflammation and oxidative damage. Current photoprotective strategies are limited by the availability/utilization of UV-A filters, highlighting an unmet need. Cannabidiol (CBD), having anti-inflammatory/antioxidant properties via regulation of nuclear erythroid 2-related factor, heme oxygenase 1, and peroxisome proliferator-activated receptor gamma, could potentially mitigate damage from UV-A exposure. OBJECTIVE/METHODS: This is a prospective, single-center, pilot clinical trial (NCT05279495). Nineteen participants applied nano-CBD (nCBD) or vehicle (VC) cream to randomized, blinded buttock sites twice daily for 14 days; then, the treated sites were irradiated with ≤3× UV-A minimal erythema dose. After 24 hours, punch biopsies were obtained for histology, immunohistochemistry, and real-time polymerase chain reaction. RESULTS: At 24 hours, 21% of participants had less observed erythema on CBD-treated skin than on VC skin. Histologically, nCBD-treated skin had reduced UV-A-induced epidermal hyperplasia than VC (P = .01). Immunohistochemistry detected reduced cytoplasmic/nuclear 8-oxoguanine glycosylase 1 staining in nCBD-treated skin compared with VC (P < .01). Quantitative mtDNA polymerase chain reaction demonstrated that UV-A-induced deletion of ND4 (proxy:4977 bp deletion; P = .003) and ND1 (proxy:3895 bp deletion; P = .002) was significantly reduced by in vivo nCBD treatment compared with VC. LIMITATIONS: Small sample size is this study's limitation. CONCLUSION: Topically applied nCBD cream reduced UV-A-induced formation of a frequent mutagenic nuclear DNA base lesion and protected against mtDNA mutations associated with UV-A-induced skin aging. To our knowledge, this trial is the first to identify UV-protective capacity of CBD-containing topicals in humans.

10.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34479993

RESUMEN

Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution.


Asunto(s)
Reparación del ADN/genética , Guanosina/análogos & derivados , Neuroblastoma/genética , Adenina/metabolismo , Niño , Citosina/metabolismo , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Femenino , Guanina/metabolismo , Guanosina/genética , Guanosina/metabolismo , Humanos , Masculino , Mutagénesis , Recurrencia Local de Neoplasia/genética , Neuroblastoma/metabolismo , Estrés Oxidativo , Polimorfismo de Nucleótido Simple/genética
11.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255794

RESUMEN

Hydroxyhydroquinone (HHQ) is an oxidative component produced by roasting coffee beans and has been reported to generate relatively large amounts of reactive oxygen species (ROS). In this study, we used senescence-accelerated mouse prone 8 (SAMP8) mice to determine whether HHQ consumption increases oxidative-stress-induced injury, because in SAMP8 mice, the activity of 8-oxoguanine DNA glycosylase 1, which repairs oxidative modifications in DNA, is decreased. The results showed that two out of twelve (16.7%) HHQ-treated mice presented polyuria and glucosuria around 2 months after the start of treatment, indicating that HHQ may act as a mutagen against SAMP8 mice, which is sensitive to oxidative damage. No abnormalities were observed in the chlorogenic acid (coffee polyphenol, CPP)-treated group. The concentration of hydrogen peroxide in the serum of SAMP8 mice was significantly higher than that in SAMR1 (senescence-resistant) control mice, and the concentration was further increased in the HHQ-treated group. CPP, when coexisting with HHQ at the rate contained in roasted coffee, decreased the amount of hydrogen peroxide in the serum of SAMP8 mice. Although CPP can act both oxidatively and antioxidatively as a polyphenol, CPP acts more antioxidatively when coexisting with HHQ. Thus, the oxidative effect of HHQ was shown to be counteracted by CPP.


Asunto(s)
Ácido Clorogénico , Hidroquinonas , Polifenoles , Animales , Ratones , Ácido Clorogénico/farmacología , Polifenoles/farmacología , Mutágenos/toxicidad , Peróxido de Hidrógeno , Estrés Oxidativo , ADN
12.
Angew Chem Int Ed Engl ; : e202413352, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145675

RESUMEN

Radiotherapy leverages ionizing radiation to kill cancer cells through direct and indirect effects, and direct effects are considered to play an equal or greater role. Several photosensitizers have been developed to mimic the direct effects of radiotherapy, generating radical cations in DNA models, but none has been applied in cellular studies. Here, we design a radiomimetic photosensitizer, producing DNA radical cations in cells for the first time. To reduce adverse effects, several redox-inducible precursors are prepared as cancer cells have elevated levels of GSH and H2O2. These precursors respond to GSH or H2O2, releasing the active photosensitizer that captures DNA abasic (AP) sites and generates DNA radical cations upon photolysis, without disrupting the redox state of cells. DNA radical cations migrate freely and are eventually trapped by H2O and O2 to yield DNA lesions, thus triggering DNA damage response. Our study suggests that direct effects of radiotherapy suppress cancer cell proliferation mainly by inducing G2/M phase cell cycle arrest, rather than promoting apoptosis. Synergistic effects of the precursor and chemotherapeutic agents are also observed in combination phototherapy. Beyond highlighting an alternative strategy for phototherapy, this proof-of-concept study affords a facile cellular platform to study the direct effects of radiotherapy.

13.
Chemphyschem ; 24(23): e202300511, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37738022

RESUMEN

8-Oxoguanosine is the most common oxidatively generated base damage and pairs with complementary cytidine within duplex DNA. The 8-oxoguanosine-cytidine lesion, if not recognized and removed, not only leads to G-to-T transversion mutations but renders the base pair being more vulnerable to the ionizing radiation and singlet oxygen (1 O2 ) damage. Herein, reaction dynamics of a prototype Watson-Crick base pair [9MOG ⋅ 1MC]⋅+ , consisting of 9-methyl-8-oxoguanine radical cation (9MOG⋅+ ) and 1-methylcystosine (1MC), was examined using mass spectrometry coupled with electrospray ionization. We first detected base-pair dissociation in collisions with the Xe gas, which provided insight into intra-base pair proton transfer of 9MOG⋅+ ⋅ 1MC ← → ${{\stackrel{ {\rightarrow} } { {\leftarrow} } } }$ [9MOG - HN1 ]⋅ ⋅ [1MC+HN3' ]+ and subsequent non-statistical base-pair separation. We then measured the reaction of [9MOG ⋅ 1MC]⋅+ with 1 O2 , revealing the two most probable pathways, C5-O2 addition and HN7 -abstraction at 9MOG. Reactions were entangled with the two forms of 9MOG radicals and base-pair structures as well as multi-configurations between open-shell radicals and 1 O2 (that has a mixed singlet/triplet character). These were disentangled by utilizing approximately spin-projected density functional theory, coupled-cluster theory and multi-referential electronic structure modeling. The work delineated base-pair structural context effects and determined relative reactivity toward 1 O2 as [9MOG - H]⋅>9MOG⋅+ >[9MOG - HN1 ]⋅ ⋅ [1MC+HN3' ]+ ≥9MOG⋅+ ⋅ 1MC.


Asunto(s)
Citosina , Protones , Emparejamiento Base , Citosina/química , Cationes , Citidina
14.
Biochem J ; 479(21): 2297-2309, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36268656

RESUMEN

If left unrepaired, the major oxidative DNA lesion 7,8-dihydro-8-oxoguanine (oxoG) promotes G-to-T transversions by favorably adopting a syn conformation and base pairing with dATP during replication. The human oxoG DNA glycosylase hOGG1 senses and removes oxoG amid millions-fold excess of guanine, thereby counteracting the genotoxic effects of the major oxidative damage. Crystal structures of hOGG1 in complex with oxoG-containing DNA have provided key insights into the lesion recognition and catalysis mechanisms of the enzyme. These lesion-recognition complex (LRC) structures typically involve a catalytically inactive hOGG1 mutant, where one of the catalytic-site amino acid residues is mutated to prevent the cleavage of oxoG. The use of a catalytically incompetent hOGG1 mutant has thus precluded understanding of unscathed interactions between oxoG and hOGG1 catalytic site as well as interactions among catalytic-site amino acid residues. As an orthogonal approach to visualize such interactions, we have co-crystallized a catalytically competent hOGG1 bound to 2'-fluoro-oxodG-containing DNA, a transition state destabilizing inhibitor that binds hOGG1 but is not processed by the enzyme. In this fluorinated lesion-recognition complex (FLRC), the 8-oxo moiety of oxoG is recognized by Gly42 and the Watson-Crick edge of oxoG is contacted by Gln315 and Pro266. The previously observed salt bridge between Lys249 and Cys253 is lacking in the FLRC, suggesting Lys249 is primed by Cys253 and poised for nucleophilic attack on C1' of oxodG. Overall, hOGG1 FLRC marks the first structure of oxoG presented into an intact catalytic site of hOGG1 and provides complementary insights into the glycosylase mechanisms of the enzyme.


Asunto(s)
ADN Glicosilasas , Humanos , Aminoácidos/metabolismo , Dominio Catalítico , ADN/química , Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN , ADN-Formamidopirimidina Glicosilasa/genética , ADN-Formamidopirimidina Glicosilasa/metabolismo , Guanina/metabolismo , Estrés Oxidativo
15.
Proc Natl Acad Sci U S A ; 117(21): 11409-11420, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32404420

RESUMEN

Formation of G-quadruplex (G4) DNA structures in key regulatory regions in the genome has emerged as a secondary structure-based epigenetic mechanism for regulating multiple biological processes including transcription, replication, and telomere maintenance. G4 formation (folding), stabilization, and unfolding must be regulated to coordinate G4-mediated biological functions; however, how cells regulate the spatiotemporal formation of G4 structures in the genome is largely unknown. Here, we demonstrate that endogenous oxidized guanine bases in G4 sequences and the subsequent activation of the base excision repair (BER) pathway drive the spatiotemporal formation of G4 structures in the genome. Genome-wide mapping of occurrence of Apurinic/apyrimidinic (AP) site damage, binding of BER proteins, and G4 structures revealed that oxidized base-derived AP site damage and binding of OGG1 and APE1 are predominant in G4 sequences. Loss of APE1 abrogated G4 structure formation in cells, which suggests an essential role of APE1 in regulating the formation of G4 structures in the genome. Binding of APE1 to G4 sequences promotes G4 folding, and acetylation of APE1, which enhances its residence time, stabilizes G4 structures in cells. APE1 subsequently facilitates transcription factor loading to the promoter, providing mechanistic insight into the role of APE1 in G4-mediated gene expression. Our study unravels a role of endogenous oxidized DNA bases and APE1 in controlling the formation of higher-order DNA secondary structures to regulate transcription beyond its well-established role in safeguarding the genomic integrity.


Asunto(s)
Daño del ADN , Reparación del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , G-Cuádruplex , Células A549 , Acetilación , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Expresión Génica , Genes myc , Genoma Humano , Guanina/química , Guanina/metabolismo , Células HCT116 , Humanos , Oxidación-Reducción , Estrés Oxidativo/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569728

RESUMEN

This research is about the profiling of barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), and rye (Secale cereale L.) FPG and OGG1 genes during grain germination. During seed germination, reactive oxygen species accumulate, which leads to DNA damage. In the base excision repair (BER) system, the enzymes formamidopyrimidine DNA glycosylase (FPG) and 8-oxoguanine DNA glycosylase (OGG1), among others, are responsible for repairing such damage. We decided to check how the expression of genes encoding these two enzymes changes in germinating grains. Spring varieties of barley, wheat, and rye from the previous growing season were used in the study. Expression level changes were checked using Real-Time PCR. After analyzing the obtained results, the maximum expression levels of FPG and OGG1 genes during germination were determined for barley, wheat, and rye. The results of the study show differences in expression levels specific to each species. The highest expression was observed at different time points for each of them. There were no differences in the highest expression for FPG and OGG1 within one species. In conclusion, the research provides information on how the level of FPG and OGG1 gene expression changes during the germination process in cereals. This is the first study looking at the expression levels of these two genes in cereals.


Asunto(s)
Hordeum , ADN-Formamidopirimidina Glicosilasa , Hordeum/genética , Triticum/genética , Grano Comestible/genética , Secale/genética , Germinación/genética
17.
Dokl Biochem Biophys ; 513(Suppl 1): S82-S86, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38337103

RESUMEN

The presence of DNA damage can increase the likelihood of DNA replication errors and promote mutations. In particular, pauses of DNA polymerase at the site of damage can lead to polymerase slippage and the formation of 1-2-nucleotide bulges. Repair of such structures using an undamaged DNA template leads to small deletions. One of the most abundant oxidative DNA lesions, 8-oxoguanine (oxoG), was shown to induce small deletions, but the mechanism of this phenomenon is currently unknown. We studied the aberrant repair of oxoG located in one- and two-nucleotide bulges by the Escherichia coli and human base excision repair systems. Our results indicate that the repair in such substrates can serve as a mechanism for fixing small deletions in bacteria but not in humans.


Asunto(s)
ADN Glicosilasas , Reparación del ADN , Guanina/análogos & derivados , Humanos , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Daño del ADN , ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleótidos
18.
J Biol Chem ; 296: 100093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33203705

RESUMEN

8-Oxoguanine glycosylase (OGG1) is a base excision repair enzyme responsible for the recognition and removal of 8-oxoguanine, a commonly occurring oxidized DNA modification. OGG1 prevents the accumulation of mutations and regulates the transcription of various oxidative stress-response genes. In addition to targeting DNA, oxidative stress can affect proteins like OGG1 itself, specifically at cysteine residues. Previous work has shown that the function of OGG1 is sensitive to oxidants, with the cysteine residues of OGG1 being the most likely site of oxidation. Due to the integral role of OGG1 in maintaining cellular homeostasis under oxidative stress, it is important to understand the effect of oxidants on OGG1 and the role of cysteines in its structure and function. In this study, we investigate the role of the cysteine residues in the function of OGG1 by mutating and characterizing each cysteine residue. Our results indicate that the cysteines in OGG1 fall into four functional categories: those that are necessary for (1) glycosylase activity (C146 and C255), (2) lyase activity (C140S, C163, C241, and C253), and (3) structural stability (C253) and (4) those with no known function (C28 and C75). These results suggest that under conditions of oxidative stress, cysteine can be targeted for modifications, thus altering the response of OGG1 and affecting its downstream cellular functions.


Asunto(s)
Cisteína/química , Cisteína/metabolismo , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Reparación del ADN/fisiología , Ensayo de Cambio de Movilidad Electroforética , Oxidación-Reducción , Estrés Oxidativo/fisiología
19.
Biochem Soc Trans ; 50(5): 1481-1488, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36305644

RESUMEN

Recent data from our laboratory has shown that the nucleotide excision repair (NER) proteins UV-damaged DNA-binding protein (UV-DDB), xeroderma pigmentosum group C (XPC), and xeroderma pigmentosum group A (XPA) play important roles in the processing of 8-oxoG. This review first discusses biochemical studies demonstrating how UV-DDB stimulates human 8-oxoG glycosylase (OGG1), MUTYH, and apurinic/apyrimidinic (AP) endonuclease (APE1) to increase their turnover at damage sites. We further discuss our single-molecule studies showing that UV-DDB associates with these proteins at abasic moieties on DNA damage arrays. Data from cell experiments are then described showing that UV-DDB interacts with OGG1 at sites of 8-oxoG. Finally, since many glycosylases are inhibited from working on damage in the context of chromatin, we present a working model of how UV-DDB may be the first responder to alter the structure of damage containing-nucleosomes to allow access by base excision repair (BER) enzymes.


Asunto(s)
Xerodermia Pigmentosa , Humanos , Daño del ADN , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Guanina/metabolismo , Xerodermia Pigmentosa/metabolismo , Proteínas de Unión al ADN/metabolismo
20.
Anal Biochem ; 657: 114905, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36154836

RESUMEN

In the present study, the objective was to evaluate in situ interaction between Benzo[a]anthracene 7,2-dione 7-oxime (BZA) and calf thymus dsDNA (ct-dsDNA) using electroanalytical genosensor. Analytical techniques based on Ultraviolet/Visible (UV-Vis) spectroscopy and electroanalytical were used to investigate the interaction processes in solution and immobilized on carbon screen-printed electrodes modified with electrochemical mediator Meldola blue. In addition, was possible to evaluate the degree of damage caused to the genetic material by the analyte through of toxicity estimate (S%). The interaction evaluated by genosensor showed processes of intercalation, degradation, and breaks of the double strand of ct-dsDNA, suggesting that the interaction simulates highly toxic (values varying from 0.6 to 0.8 µA in 48 h of interaction), such as 8-oxoguanine (+0.48 V), which is a by-product of guanine oxidation. Furthermore, monitoring A (+1.10 V) after 1 h showed an S% value between 50 and 90%, indicative of high toxicity, and monitoring G (+0.85 V), which showed S>90%, indicated no toxicity after 10 min. Overall, the electroanalytical genosensor developed in a miniaturized system displayed good reproducibility and stability over time being a quick alternative for assesses the degree of toxicity between toxic xenobiotics and biologically electroactive molecules, such as DNA.


Asunto(s)
Técnicas Biosensibles , Oximas , Antracenos , Técnicas Biosensibles/métodos , Carbono/química , ADN/química , Electrodos , Guanina , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA