RESUMEN
BACKGROUND: Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS: To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17ß-estradiol (E2). METHODS: These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS: All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION: Natural estrogens were no less toxic than a synthetic one.
Asunto(s)
Proliferación Celular , Estradiol , Flavanonas , Tartrazina , Humanos , Animales , Ratas , Estradiol/farmacología , Flavanonas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Tartrazina/farmacología , Carcinoma Hepatocelular , Neoplasias Hepáticas/inducido químicamente , Células Hep G2 , Estrógenos/farmacología , Congéneres del Estradiol/farmacología , Fitoestrógenos/farmacologíaRESUMEN
It has been shown that citrus flavanone naringenin and its prenyl derivative 8-prenylnaringenin (8-PN) possess various pharmacological activities in in vitro and in vivo models. Interestingly, it has been proposed that prenylation can enhance biological potentials, including the estrogen-like activities of flavonoids. The objective of this study was to investigate the anti-diabetic potential and molecular mechanism of 8-PN in streptozotocin (STZ)-induced insulin-deficient diabetic mice in comparison with naringenin reported to exhibit hypoglycemic effects. The oral administration of naringenin and 8-PN ameliorated impaired glucose homeostasis and islet dysfunction induced by STZ treatment. These protective effects were associated with the suppression of pancreatic ß-cell apoptosis and inflammatory responses in mice. Moreover, both naringenin and 8-PN normalized STZ-induced insulin-signaling defects in skeletal muscles and apoptotic protein expression in the liver. Importantly, 8-PN increased the protein expression levels of estrogen receptor-α (ERα) in the pancreas and liver and of fibroblast growth factor 21 in the liver, suggesting that 8-PN could act as an ERα agonist in the regulation of glucose homeostasis. This study provides novel insights into the mechanisms underlying preventive effects of naringenin and 8-PN on the impairment of glucose homeostasis in insulin-deficient diabetic mice.
Asunto(s)
Diabetes Mellitus Experimental , Flavanonas , Animales , Apoptosis , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Receptor alfa de Estrógeno , Estrógenos/farmacología , Flavanonas/uso terapéutico , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Ratones , Fitoestrógenos/uso terapéutico , Estreptozocina/farmacologíaRESUMEN
In recent years, the interest in the health-promoting effects of hop prenylflavonoids, especially its estrogenic effects, has grown. Unfortunately, one of the most potent phytoestrogens identified so far, 8-prenylnaringenin, is only a minor component of hops, so its isolation from hop materials for the production of estrogenically active food supplements has proved to be problematic. The aim of this study was to optimize the conditions (e.g., temperature, the length of the process and the amount of the catalyst) to produce 8-prenylnaringenin-rich material by the magnesium oxide-catalyzed thermal isomerization of desmethylxanthohumol. Under these optimized conditions, the yield of 8-prenylnaringenin was 29 mg per 100 gDW of product, corresponding to a >70% increase in its content relative to the starting material. This process may be applied in the production of functional foods or food supplements rich in 8-prenylnaringenin, which may then be utilized in therapeutic agents to help alleviate the symptoms of menopausal disorders.
Asunto(s)
Flavanonas/metabolismo , Flavonoides/metabolismo , Fitoestrógenos/metabolismo , Preparaciones de Plantas/metabolismo , Propiofenonas/metabolismo , Cerveza/análisis , Catálisis , Suplementos Dietéticos/análisis , Flavanonas/química , Flavonoides/química , Humanos , Humulus/química , Óxido de Magnesio/química , Óxido de Magnesio/metabolismo , Fitoestrógenos/química , Extractos Vegetales/metabolismo , Preparaciones de Plantas/química , Propiofenonas/química , TemperaturaRESUMEN
The isomers 8-prenylnaringenin and 6-prenylnaringenin, both secondary metabolites occurring in hops, show interesting biological effects, like estrogen-like, cytotoxic, or neuro regenerative activities. Accordingly, abundant sources for this special flavonoids are needed. Extraction is not recommended due to the very low amounts present in plants and different synthesis approaches are characterized by modest yields, multiple steps, the use of expensive chemicals, or an elaborate synthesis. An easy synthesis strategy is the demethylation of xanthohumol, which is available due to hop extraction industry, using lithium chloride and dimethylformamide, but byproducts and low yield did not make this feasible until now. In this study, the demethylation of xanthohumol to 8-prenylnaringenin and 6-prenylnaringenin is described the first time and this reaction was optimized using Design of Experiment and microwave irradiation. With the optimized conditions-temperature 198 °C, 55 eq. lithium chloride, and a reaction time of 9 min, a final yield of 76% of both prenylated flavonoids is reached.
Asunto(s)
Desmetilación , Flavanonas/síntesis química , Flavonoides/química , Flavonoides/síntesis química , Microondas , Propiofenonas/química , Proyectos de Investigación , Flavanonas/química , Cloruro de Litio/química , Temperatura , Factores de TiempoRESUMEN
The dynamic and delicate interactions amongst intestinal microbiota, metabolome and metabolism dictates human health and disease. In recent years, our understanding of gut microbial regulation of intestinal immunometabolic and redox homeostasis have evolved mainly out of in vivo studies associated with high-fat feeding induced metabolic diseases. Techniques utilizing fecal transplantation and germ-free mice have been instrumental in reproducibly demonstrating how the gut microbiota affects disease pathogenesis. However, the pillars of modern drug discovery i.e. evidence-based pharmacological studies critically lack focus on intestinal microflora. This is primarily due to targeted in vitro molecular-approaches at cellular-level that largely overlook the etiology of disease pathogenesis from the physiological perspective. Thus, this review aims to provide a comprehensive understanding of the key notions of intestinal microbiota and dysbiosis, and highlight the microbiota-phytochemical bidirectional interactions that affects bioavailability and bioactivity of parent phytochemicals and their metabolites. Potentially by focusing on the three major aspects of gut microbiota i.e. microbial abundance, diversity, and functions, I will discuss phytochemical-microbiota reciprocal interactions, biotransformation of phytochemicals and plant-derived drugs, and pre-clinical and clinical efficacies of herbal medicine on dysbiosis. Additionally, in relation to phytochemical pharmacology, I will briefly discuss the role of dietary-patterns associated with changes in microbial profiles and review pharmacological study models considering possible microbial effects. This review therefore, emphasize on the timely and critically needed evidence-based phytochemical studies focusing on gut microbiota and will provide newer insights for future pre-clinical and clinical phytopharmacological interventions.
Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Fitoquímicos/farmacología , Fitoterapia , Animales , Biotransformación , Dieta , Humanos , Fitoquímicos/farmacocinéticaRESUMEN
BACKGROUND/AIMS: Prenylnaringenins are natural prenylflavonoids with anticancer properties. However, the underlying mechanisms have not been elucidated yet. Here we report a novel mode of action of 6- and 8-prenylnaringenin (PN) on human melanoma cells: Inhibition of cellular histone deacetylases (HDACs). METHODS: We performed in silico and in vitro analyses using 6-PN or 8-PN to study a possible interaction of 6-PN or 8-PN with HDAC as well as Western blot and FACS analyses, real-time cell proliferation and cell viability assays to assess the impact of 6-PN and 8-PN on human metastatic melanoma cells. RESULTS: In silico, 6-PN and 8-PN fit into the binding pocket of HDAC2, 4, 7 and 8, binding to the zinc ion of their catalytic center that is essential for enzymatic activity. In vitro, 100 µmol/L of 6-PN or 8-PN inhibited all 11 conserved human HDAC of class I, II and IV. In clinical oncology HDAC inhibitors are currently investigated as new anticancer compounds. In line, treatment of SK-MEL-28 cells with 6-PN or 8-PN induced a hyperacetylation of histone complex H3 within 2 h. Further, 6-PN or 8-PN mediated a prominent, dose-dependent reduction of cellular proliferation and viability of SK-MEL-28 and BLM melanoma cells. This effect was apoptosis-independent and accompanied by down-regulation of mTOR-specific pS6 protein via pERK/pP90 in SK-MEL-28 cells. CONCLUSION: The identification of a broad inhibitory capacity of 6-PN and 8-PN for HDAC enzymes with antiproliferative effects on melanoma cells opens the perspective for clinical application as novel anti-melanoma drugs and the usage as innovative lead structures for chemical modification to enhance pharmacology or inhibitory activities.
Asunto(s)
Apoptosis/efectos de los fármacos , Flavanonas/farmacología , Flavonoides/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Humulus/química , Acetilación/efectos de los fármacos , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavanonas/química , Flavanonas/aislamiento & purificación , Flavonoides/química , Flavonoides/aislamiento & purificación , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/aislamiento & purificación , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Humulus/metabolismo , Melanoma/metabolismo , Melanoma/patología , Simulación del Acoplamiento Molecular , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Xanthohumol (XN), a prenylated chalcone unique to hops (Humulus lupulus) and two derived prenylflavanones, isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) gained increasing attention as potential anti-diabetic and cancer preventive compounds. Two enzymes of the aldo-keto reductase (AKR) superfamily are notable pharmacological targets in cancer therapy (AKR1B10) and in the treatment of diabetic complications (AKR1B1). Our results show that XN, IX and 8-PN are potent uncompetitive, tight-binding inhibitors of human aldose reductase AKR1B1 (Ki = 15.08 µM, 0.34 µM, 0.71 µM) and of human AKR1B10 (Ki = 20.11 µM, 2.25 µM, 1.95 µM). The activity of the related enzyme AKR1A1 was left unaffected by all three compounds. This is the first time these three substances have been tested on AKRs. The results of this study may provide a basis for further quantitative structure?activity relationship models and promising scaffolds for future anti-diabetic or carcinopreventive drugs.
Asunto(s)
Aldo-Ceto Reductasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Flavanonas/farmacología , Flavonoides/farmacología , Humulus/química , Propiofenonas/farmacología , Xantonas/farmacología , Aldo-Ceto Reductasas/metabolismo , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Flavanonas/química , Flavonoides/química , Humanos , Estructura Molecular , Propiofenonas/química , Relación Estructura-Actividad , Xantonas/químicaRESUMEN
Xanthohumol, isoxanthohumol, and 8-prenylnaringenin in beer, hop and hop pellet samples were analyzed by HPLC using an InertSustain phenyl column and the mobile phase containing 40% methanol and 12% 2-propanol. Fractions of isoxanthohumol and 8-prenylnaringenin obtained by the above HPLC were separately collected. Isoxanthohumol and 8-prenylnaringenin were enantioseparated by HPLC using a Chiralcel OD-H column with a mobile phase composed of hexane-ethanol (90:10, v/v) and a Chiralpak AD-RH column with a mobile phase composed of methanol-2-propanol-water (40:20:40, v/v/v), respectively. Isoxanthohumol and 8-prenylnaringenin from beer, hop and hop pellet samples were found to be present in a racemic mixture. This can be explained by the fact that the two analytes were produced by a nonenzymatic process. The effects of boiling conditions on the conversion of xanthohumol into isoxanthohumol were also studied. A higher concentration of ethanol in heating solvent resulted in a decrease in the conversion ratio and the conversion was stopped by addition of ethanol at >50% (v/v). The isomerization was significantly affected pH (2-10) and the boiling medium at pH 5 was minimum for the conversion. Therefore, it was suggested that xanthohumol was relatively difficult to convert to isoxanthohumol in wort (pH 5-5.5) during boiling.
Asunto(s)
Cerveza/análisis , Cromatografía Líquida de Alta Presión/métodos , Flavanonas/aislamiento & purificación , Xantonas/aislamiento & purificación , Flavanonas/análisis , Flavanonas/química , Humulus/química , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados , Estereoisomerismo , Xantonas/análisis , Xantonas/químicaRESUMEN
Hop (Humulus lupulus L.), as a key ingredient for beer brewing, is also a source of many biologically active molecules. A notable compound, 8-prenylnaringenin (8-PN), structurally belonging to the group of prenylated flavonoids, was shown to be a potent phytoestrogen, and thus, became the topic of active research. Here, we overview the pharmacological properties of 8-PN and its therapeutic opportunities. Due to its estrogenic effects, administration of 8-PN represents a novel therapeutic approach to the treatment of menopausal and post-menopausal symptoms that occur as a consequence of a progressive decline in hormone levels in women. Application of 8-PN in the treatment of menopause has been clinically examined with promising results. Other activities that have already been assessed include the potential to prevent bone-resorption or inhibition of tumor growth. On the other hand, the use of phytoestrogens is frequently questioned regarding possible adverse effects associated with long-term consumption. In conclusion, we emphasize the implications of using 8-PN in future treatments of menopausal and post-menopausal symptoms, including the need for precise evidence and further investigations to define the safety risks related to its therapeutic use.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Flavanonas/farmacología , Humulus/química , Fitoestrógenos/farmacología , Antineoplásicos Fitogénicos/efectos adversos , Antineoplásicos Fitogénicos/química , Femenino , Flavanonas/efectos adversos , Flavanonas/química , Humanos , Menopausia/efectos de los fármacos , Estructura Molecular , Osteoporosis Posmenopáusica/tratamiento farmacológico , Fitoestrógenos/efectos adversos , Fitoestrógenos/químicaRESUMEN
Gliomas are one of the most aggressive and treatment-resistant types of human brain cancer. Identification and evaluation of anticancer properties of compounds found in plants, such as naringenin (N) and 8-prenylnaringenin (8PN), are among the most promising applications in glioma therapy. The prenyl group seems to be crucial to the anticancer activity of flavones, since it may lead to enhanced cell membrane targeting and thus increased intracellular activity. It should be noted that 8PN content in hop cones is 10 to 100 times lower compared to other flavonoids, such as xanthohumol. In the study presented, we used a simple method for the synthesis of 8PN from isoxanthohumol-O-demethylation, with a high yield of 97%. Cellular accumulation and cytotoxicity of naringenin and 8-prenylnaringenin in normal (BJ) and cancer cells (U-118 MG) was also examined. Obtained data indicated that 8-prenylnaringenin exhibited higher cytotoxicity against used cell lines than naringenin, and the effect of both flavones was stronger in U-118 MG cells than in normal fibroblasts. The anticancer properties of 8PN correlated with its significantly greater (37%) accumulation in glioblastoma cells than in normal fibroblasts. Additionally, naringenin demonstrated higher selectivity for glioblastoma cells, as it was over six times more toxic for cancer than normal cells. Our results provide evidence that examined prenylated and non-prenylated flavanones have different biological activities against normal and cancer cell lines, and this property may be useful in designing new anticancer drugs for glioblastoma therapy.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Fibroblastos/efectos de los fármacos , Flavanonas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Flavanonas/síntesis química , Glioblastoma , Humanos , Estructura MolecularRESUMEN
8-Prenylnaringenin (8-PN) is a prenylflavonoid that originates from hop extracts and is thought to help prevent disuse muscle atrophy. We hypothesized that 8-PN affects muscle plasticity by promoting muscle recovery under disuse muscle atrophy. To test the promoting effect of 8-PN on muscle recovery, we administered an 8-PN mixed diet to mice that had been immobilized with a cast to one leg for 14 days. Intake of the 8-PN mixed diet accelerated recovery from muscle atrophy, and prevented reductions in Akt phosphorylation. Studies on cell cultures of mouse myotubes in vitro demonstrated that 8-PN activated the PI3K/Akt/P70S6K1 pathway at physiological concentrations. A cell-culture study using an inhibitor of estrogen receptors and an in vivo experiment with ovariectomized mice suggested that the estrogenic activity of 8-PN contributed to recovery from disuse muscle atrophy through activation of an Akt phosphorylation pathway. These data strongly suggest that 8-PN is a naturally occurring compound that could be used as a nutritional supplement to aid recovery from disuse muscle atrophy.
Asunto(s)
Flavanonas/farmacología , Músculo Esquelético/fisiopatología , Atrofia Muscular/fisiopatología , Proteína Oncogénica v-akt/metabolismo , Recuperación de la Función/fisiología , Transducción de Señal , Animales , Línea Celular , Activación Enzimática/efectos de los fármacos , Flavanonas/administración & dosificación , Suspensión Trasera , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Fosforilación/efectos de los fármacos , Fitoestrógenos/administración & dosificación , Fitoestrógenos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Resultado del TratamientoRESUMEN
Isoxanthohumol (IXN), a prenylated flavonoid from hops, exhibits diverse biological activities, e.g. antitumor, antiinflammatory, antioxidant and antiangiogenic. In this study, the effect of IXN is evaluated on two melanoma cell lines with dissimilar molecular background, B16 and A375. The treatment of both cell lines with IXN resulted in dose-dependent decrease of cell viability. Abolished viability was in correlation with changed morphology and loss of dividing potential indicating phenotypical alteration of both tested cell lines. While modified B16 cells underwent the process of non-classic differentiation followed by tyrosinase activity without enhancement of melanin content, inhibition of Notch 1, ß-catenin and Oct-3/4 was observed in A375 cells indicating loss of their pluripotent characteristics. In parallel with this, distinct subpopulations in both cell cultures entered the process of programmed cell death-apoptosis in a caspase independent manner. The described changes in cultures upon exposure to IXN could be connected with the suppression of reactive oxygen (ROS) and nitrogen species (RNS) induced by the drug. Despite the differences in which IXN promoted modifications in the upper part of the PI3K/Akt and MEK-ERK signaling pathways between B16 and A375 cells, p70S6K and its target S6 protein in both types of melanoma cells, after transient activation, became inhibited. In addition to direct input of IXN on cell viability, this study for the first time shows that IXN strongly sensitizes melanoma cells to the treatment with paclitaxel in vivo, in concordance with data obtained in vitro on B16 cells as well as their highly invasive F10 subclone.
Asunto(s)
Antineoplásicos/uso terapéutico , Flavonoides/uso terapéutico , Melanoma/tratamiento farmacológico , Paclitaxel/uso terapéutico , Xantonas/uso terapéutico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Flavonoides/farmacología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/metabolismo , Melanoma/patología , Ratones Endogámicos C57BL , Paclitaxel/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Xantonas/farmacologíaRESUMEN
Common hop (Humulus lupulus) constitutes a source of numerous prenylated chalcones such as xanthohumol (XH) and flavanones such as 8-prenylnaringenin (8-PN) and isoxanthohumol (IXH). Range of their biological activities includes estrogenic, anti-inflammatory, anti-infective, anti-cancer, and antioxidant activities. The aim of the present work was to characterize the influence of prenylated polyphenols on model 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes by means of differential scanning calorimetry (DSC), fluorescence and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies. All studied compounds intercalated into DPPC bilayers and decreased its melting temperature as recorded by DSC, Laurdan and Prodan fluorescence, and ATR-FTIR. Polyphenols interacted mainly with glycerol backbone and acyl chain region of membrane. Magnitude of the induced effect correlated both with lipophilicity and molecular shape of the studied compounds. Elbow-shaped 8-PN and IXH were locked at polar-apolar region with their prenyl chains penetrating into hydrophobic part of the bilayer, while relatively planar XH molecule adopted linear shape that resulted in its deeper insertion into hydrophobic region. Additionally, by means of DSC and Laurdan fluorescence IXH was demonstrated to induce lateral phase separation in DPPC bilayers in gel-like state. It was assumed that IXH-rich and IXH-poor microdomains appeared within membrane. Present work constitutes the first experimental report describing interactions of prenylated hop polyphenols with phospholipid model membranes.
Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Flavanonas/química , Flavonoides/química , Humulus/química , Membrana Dobles de Lípidos/química , Propiofenonas/química , Xantonas/química , 1,2-Dipalmitoilfosfatidilcolina/química , 2-Naftilamina/análogos & derivados , Rastreo Diferencial de Calorimetría , Colorantes Fluorescentes , Interacciones Hidrofóbicas e Hidrofílicas , Lauratos , Estructura Molecular , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , TermodinámicaRESUMEN
Concerned about the safety of conventional estrogen replacement therapy, women are using botanical dietary supplements as alternatives for the management of menopausal symptoms such as hot flashes. Before botanical dietary supplements can be evaluated clinically for safety and efficacy, botanically authenticated and standardized forms are required. To address the demand for a standardized, estrogenic botanical dietary supplement, an extract of hops (Humulus lupulus L.) was developed. Although valued in the brewing of beer, hop extracts are used as anxiolytics and hypnotics and have well-established estrogenic constituents. Starting with a hop cultivar used in the brewing industry, spent hops (the residue remaining after extraction of bitter acids) were formulated into a botanical dietary supplement that was then chemically and biologically standardized. Biological standardization utilized the estrogen-dependent induction of alkaline phosphatase in the Ishikawa cell line. Chemical standardization was based on the prenylated phenols in hops that included estrogenic 8-prenylnaringenin, its isomer 6-prenylnaringenin, and pro-estrogenic isoxanthohumol and its isomeric chalcone xanthohumol, all of which were measured using high-performance liquid chromatography-tandem mass spectrometry. The product of this process was a reproducible botanical extract suitable for subsequent investigations of safety and efficacy.
Asunto(s)
Suplementos Dietéticos/normas , Estrógenos/química , Estrógenos/normas , Humulus/química , Extractos Vegetales/química , Extractos Vegetales/normas , Línea Celular , Suplementos Dietéticos/análisis , Estrógenos/farmacología , Femenino , Humanos , Extractos Vegetales/farmacologíaRESUMEN
Vegetables and fruits contain prenylflavonoids with biological functions that might improve human health. The prenylflavonoid isoxanthohumol (IXA) and its derivative, 8-prenylnaringenin (8-PN), have beneficial activities, including anti-cancer effects and suppression of insulin resistance. However, their pharmacokinetic profile is unclear. Previous studies suggested flavonoids have low systemic availability and are excreted via the feces. Therefore, this study investigated the tissue distribution dynamics of high-purity IXA (>90%) from hops administered orally, either singly (50 mg/kg body weight [BW]) or daily for 14 days (30 mg/kg BW), to mice. High-pressure liquid chromatography demonstrated that IXA was absorbed rapidly after a single administration and reached plasma maximum concentration (C max) (3.95 ± 0.81 µmol/L) by 0.5 h. IXA was present at high levels in the liver compared with the kidney, pancreas, lung, skeletal muscle, spleen, thymus, and heart. The highest IXA level after 14 days of IXA ingestion was observed in the liver, followed by the kidney, thymus, spleen, lung, and brain. There was no significant difference in IXA accumulation in tissues between the single and multiple dose groups. Analyses of the livers of rats treated with different concentrations of IXA (112.5-1500 mg/kg BW) once a day for 28 days demonstrated that IXA accumulated dose-dependently with a correlation coefficient of .813. The accumulation of 8-PN was dependent on the intake period but not the intake amount of IXA (correlation coefficient -.255). In summary, IXA and 8-PN were detected in tissues and organs up to 24 h after ingestion, suggesting that orally ingested IXA might have health benefits as a nutraceutical.
RESUMEN
Xanthohumol (XN) and 8-prenylnaringenin (8PN) are hop (Humulus lupulus L.) polyphenols studied for their chemopreventive effects on certain cancer types. The breast cancer line MCF-7 was treated with doses ranging from 0.001 to 20 µM of XN or 8PN in order to assess the effects on cell viability and oxidative stress. Hoechst 33342 was used to measure cell viability and reactive oxygen species (ROS) production was determined by 2',7'-dichlorofluorescein diacetate. Catalase, superoxide dismutase, and glutathione reductase enzymatic activities were determined and protein expression of sirtuin1, sirtuin3, and oxidative phosphorylation system (OXPHOS) were done by Western blot. Treatments XN 0.01, 8PN 0.01, and 8PN 1 µM led to a decrease in ROS production along with an increase of OXPHOS and sirtuin expression; in contrast, XN 5 µM gave rise to an increase of ROS production accompanied by a decrease in OXPHOS and sirtuin expression. These results suggest that XN in low dose (0.01 µM) and 8PN at all assayed doses (0.001-20 µM) presumably improve mitochondrial function, whereas a high dose of XN (5 µM) worsens the functionality of this organelle.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Flavanonas/administración & dosificación , Flavonoides/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Propiofenonas/administración & dosificación , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Catalasa/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutatión Reductasa/metabolismo , Humanos , Células MCF-7 , Mitocondrias , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismoRESUMEN
OBJECTIVES: This study aims to investigate the effects of a combination of soy isoflavones, 8-prenylnaringenin (8-PN), and melatonin in postmenopausal women suffering from moderate-to-severe hot flashes (HFs). METHODS: A multicenter, prospective, open-label study enrolled 44 postmenopausal women suffering from moderate-to-severe HFs (≥ 5 daily or ≥ 35 weekly) to receive 54.4 mg standardized soy isoflavones (including 24.5 mg genistein and 16.3 mg daidzein), 100 µg 8-PN, and 1 mg melatonin once daily for 12 weeks. The primary clinical outcomes included changes in health-related quality of life (HRQoL) scores (Menopause-Specific QoL questionnaire [MENQoL] and Cervantes Scale) and HFs following 4 and 12 weeks of treatment. Other analyses included treatment adherence, acceptability, tolerability, and safety. RESULTS: All of the four domains of MENQoL questionnaire significantly improved at 4 weeks (P < 0.05) and 12 weeks (P < 0.001), affecting significantly the vasomotor, psychosocial, and physical spheres (41.2%, 26.3%, and 25.0%; 12 weeks improvements, respectively). Similarly, in the menopause (39.3%) and psychic (51.7%) domains (both P < 0.05 at 12 weeks), the global score of the Cervantes Scale significantly increased at 4 weeks (18.6%) and 12 weeks (35.4%). Accordingly, moderate-to-severe HFs significantly decreased at 4 weeks compared to baseline (41.7% reduction) and further reduced at 12 weeks (76.5%), including the total number of episodes. CONCLUSIONS: Food supplements containing soy isoflavones, 8-PN, and melatonin showed an early and progressive benefit for reducing clinically significant HFs and for improving HRQoL across all domains, favorably affecting postmenopausal women's overall well-being.
RESUMEN
Vaccines and antiviral drugs are widely used to treat influenza infection. However, they cannot rapidly respond to drug-resistant viruses. Therefore, new anti-influenza virus strategies are required. Naringenin is a flavonoid with potential for new antiviral strategies. In this study, we evaluated the antiviral effects of naringenin derivatives and examined the relationship between their cellular uptake and antiviral effects. Madin-Darby canine kidney (MDCK) cells were infected with the A/PR/8/34 strain and exposed to the compound-containing medium for 24 h. The amount of virus in the supernatant was calculated using focus-forming reduction assay. Antiviral activity was evaluated using IC50 and CC50 values. Cells were exposed to a constant concentration of naringenin or prenylated naringenin, and intracellular uptake and distribution were evaluated using a fluorescence microscope. Prenylated naringenin showed strong anti-influenza virus effects, and the amount of intracellular uptake was revealed by the strong intracellular fluorescence. In addition, intracellular distribution differed depending on the position of the prenyl group. The steric factor of naringenin is deeply involved in influenza A virus activity, and prenyl groups are desirable. Furthermore, the prenyl group affects cellular affinity, and the uptake mechanism differs depending on its position. These results provide important information on antiviral strategies.
RESUMEN
8-prenylnaringenin (8-PN) is a potent estrogen with high medicinal values. It also serves as an important precursor for many prenylated flavonoids. Microbial synthesis of 8-PN is mainly hindered by the low catalytic activity of prenyltransferases (PTS) and insufficient supply of precursors. In this work, a SfN8DT-1 from Sophora flavescens was used to improve the efficiency of (2S)-naringenin prenylation. The predicted structure of SfN8DT-1 showed that its main body is comprised of 9 α-helices and 8 loops, along with a long side chain formed by nearly 120 amino acids. SfN8DT-1 mutants with different side-chain truncated were tested in Saccharomyces cerevisiae. A mutant expressing the truncated enzyme at K62 site, designated as SfND8T-1-t62, produced the highest 8-PN titer. Molecular docking of SfN8DT-1-t62 with (2S)-naringenin and dimethylallyl diphosphate (DMAPP) showed that K185 was a potentially crucial residue. Alanine scanning within a range of 0.5 nm around these two substrates showed that the mutant K185A may decrease its affinity to substrates, which also indicated K185 was a potentially critical residue. Besides, the mutant K185W enhanced the affinity to ligands implied by the simulated saturation mutation, while the saturated mutation of K185 showed a great decrease in 8-PN production, indicating K185 is vital for the activity of SfN8DT-1. Subsequently, overexpressing the key genes of Mevalonate (MVA) pathway further improved the titer of 8-PN to 31.31 mg/L, which indicated that DMAPP supply is also a limiting factor for 8-PN synthesis. Finally, 44.92 mg/L of 8-PN was produced in a 5 L bioreactor after 120 h, which is the highest 8-PN titer reported to date.
Asunto(s)
Dimetilaliltranstransferasa , Flavanonas/biosíntesis , Sophora , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Flavonoides/metabolismo , Simulación del Acoplamiento Molecular , Prenilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sophora/genética , Sophora/metabolismoRESUMEN
8-Prenylnaringenin (8-PN), a hop flavonoid, is a promising food substance with health benefits. Compared with nonprenylated naringenin, 8-PN exhibits stronger estrogenic activity and prevents muscle atrophy. Moreover, 8-PN prevents hot flushes and bone loss. Considering that prenylation reportedly improves the bioavailability of flavonoids, we compared the parameters related to the bioavailability [pharmacokinetics and tissue distribution in C57/BL6 mice, binding affinity to human serum albumin (HSA), and cellular uptake in HEK293 cells] of 8-PN and its mother (non-prenylated) compound naringenin. C57/BL6 mice were fed an 8-PN or naringenin mixed diet for 22 days. The amount of 8-PN (nmol/g tissue) in the kidneys (16.8 ± 9.20), liver (14.8 ± 2.58), muscles (3.33 ± 0.60), lungs (2.07 ± 0.68), pancreas (1.80 ± 0.38), heart (1.71 ± 0.27), spleen (1.36 ± 0.29), and brain (0.31 ± 0.09) was higher than that of naringenin. A pharmacokinetic study in mice demonstrated that the C max of 8-PN (50 mg/kg body weight) was lower than that of naringenin; however, the plasma concentration of 8-PN 8 h after ingestion was higher than that of naringenin. The binding affinity of 8-PN to HSA and cellular uptake in HEK293 cells were higher than those of naringenin. 8-PN bioavailability features assessed in mouse or human model experiments were obviously different from those of naringenin.