Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 52(1): 109-122.e6, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31882361

RESUMEN

Recent work suggests that cholesterol metabolism impacts innate immune responses against infection. However, the key enzymes or the natural products and mechanisms involved are not well elucidated. Here, we have shown that upon DNA and RNA viral infection, macrophages reduced 7-dehydrocholesterol reductase (DHCR7) expression. DHCR7 deficiency or treatment with the natural product 7-dehydrocholesterol (7-DHC) could specifically promote phosphorylation of IRF3 (not TBK1) and enhance type I interferon (IFN-I) production in macrophages. We further elucidated that viral infection or 7-DHC treatment enhanced AKT3 expression and activation. AKT3 directly bound and phosphorylated IRF3 at Ser385, together with TBK1-induced phosphorylation of IRF3 Ser386, to achieve IRF3 dimerization. Deletion of DHCR7 and the DHCR7 inhibitors including AY9944 and the chemotherapy drug tamoxifen promoted clearance of Zika virus and multiple viruses in vitro or in vivo. Taken together, we propose that the DHCR7 inhibitors and 7-DHC are potential therapeutics against emerging or highly pathogenic viruses.


Asunto(s)
Deshidrocolesteroles/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/biosíntesis , Macrófagos/inmunología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Estomatitis Vesicular/inmunología , Células A549 , Animales , Línea Celular , Colesterol/metabolismo , Activación Enzimática/inmunología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Interferencia de ARN , ARN Interferente Pequeño/genética , Virus de la Estomatitis Vesicular Indiana/inmunología
2.
J Biol Chem ; 299(12): 105425, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926285

RESUMEN

Akt3 is one of the three members of the serine/threonine protein kinase B (AKT) family, which regulates multiple cellular processes. We have previously demonstrated that global knockout of Akt3 in mice promotes atherogenesis in a macrophage-dependent manner. Whether enhanced Akt3 kinase activity affects atherogenesis is not known. In this study, we crossed atherosclerosis-prone ApoE-/- mice with a mouse strain that has enhanced Akt3 kinase activity (Akt3nmf350) and assessed atherosclerotic lesion formation and the role of macrophages in atherogenesis. Significant reduction in atherosclerotic lesion area and macrophage accumulation in lesions were observed in ApoE-/-/Akt3nmf350 mice fed a Western-type diet. Experiments using chimeric ApoE-/- mice with either ApoE-/-/Akt3nmf350 bone marrow or ApoE-/- bone marrow cells showed that enhanced Akt3 activity specifically in bone marrow-derived cells is atheroprotective. The atheroprotective effect of Akt3nmf350 was more pronounced in male mice. In line with this result, the release of the pro-inflammatory cytokines IL-6, MCP1, TNF-α, and MIP-1α was reduced by macrophages from male but not female ApoE-/-/Akt3nmf350 mice. Levels of IL-6 and TNF-α were also reduced in atherosclerotic lesions of ApoE-/-/Akt3nmf350 male mice compared to ApoE-/- mice. Macrophages from male ApoE-/-/Akt3nmf350 mice were also more resistant to apoptosis in vitro and in vivo and tended to have more pronounced M2 polarization in vitro. These findings demonstrated that enhanced Akt3 kinase activity in macrophages protects mice from atherosclerosis in hyperlipidemic mice in a gender-dependent manner.


Asunto(s)
Aterosclerosis , Hiperlipidemias , Animales , Masculino , Ratones , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Hiperlipidemias/complicaciones , Hiperlipidemias/genética , Interleucina-6 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa
3.
Stem Cells ; 41(4): 328-340, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36640125

RESUMEN

Given the increasing popularity of electronic cigarettes (e-cigs), it is imperative to evaluate the potential health risks of e-cigs, especially in users with preexisting health concerns such as pulmonary arterial hypertension (PAH). The aim of the present study was to investigate whether differential susceptibility exists between healthy and patients with PAH to e-cig exposure and the molecular mechanisms contributing to it. Patient-specific induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from healthy individuals and patients with PAH were used to investigate whether e-cig contributes to the pathophysiology of PAH and affects EC homeostasis in PAH. Our results showed that PAH iPSC-ECs showed a greater amount of damage than healthy iPSC-ECs upon e-cig exposure. Transcriptomic analyses revealed that differential expression of Akt3 may be responsible for increased autophagic flux impairment in PAH iPSC-ECs, which underlies increased susceptibility upon e-cig exposure. Moreover, knockdown of Akt3 in healthy iPSC-ECs significantly induced autophagic flux impairment and endothelial dysfunction, which further increased with e-cig treatment, thus mimicking the PAH cell phenotype after e-cig exposure. In addition, functional disruption of mTORC2 by knocking down Rictor in PAH iPSC-ECs caused autophagic flux impairment, which was mediated by downregulation of Akt3. Finally, pharmacological induction of autophagy via direct inhibition of mTORC1 and indirect activation of mTORC2 with rapamycin reverses e-cig-induced decreased Akt3 expression, endothelial dysfunction, autophagic flux impairment, and decreased cell viability, and migration in PAH iPSC-ECs. Taken together, these data suggest a potential link between autophagy and Akt3-mediated increased susceptibility to e-cig in PAH.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Células Madre Pluripotentes Inducidas , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/metabolismo , Células Endoteliales/metabolismo , Autofagia , Células Madre Pluripotentes Inducidas/fisiología
4.
Respir Res ; 25(1): 54, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267920

RESUMEN

BACKGROUND: Alveolar hypercoagulation and fibrinolytic inhibition are mainly responsible for massive alveolar fibrin deposition, which are closely related with refractory hypoxemia in acute respiratory distress syndrome (ARDS). Our previous study testified runt-related transcription factor (RUNX1) participated in the regulation of this pathophysiology in this syndrome, but the mechanism is unknown. We speculate that screening the downstream genes associated with RUNX1 will presumably help uncover the mechanism of RUNX1. METHODS: Genes associated with RUNX1 were screened by CHIP-seq, among which the target gene was verified by Dual Luciferase experiment. Then the efficacy of the target gene on alveolar hypercoagulation and fibrinolytic inhibition in LPS-induced ARDS was explored in vivo as well as in vitro. Finally, whether the regulatory effects of RUNX1 on alveolar hypercoagulation and fibrinolytic in ARDS would be related with the screened target gene was also sufficiently explored. RESULTS: Among these screened genes, AKT3 was verified to be the direct target gene of RUNX1. Results showed that AKT3 was highly expressed either in lung tissues of LPS-induced rat ARDS or in LPS-treated alveolar epithelia cell type II (AECII). Tissue factor (TF) and plasminogen activator inhibitor 1 (PAI-1) were increasingly expressed both in lung tissues of ARDS and in LPS-induced AECII, which were all significantly attenuated by down-regulation of AKT3. Inhibition of AKT3 gene obviously ameliorated the LPS-induced lung injury as well as the collagen I expression in ARDS. RUNX1 overexpression not only promoted the expressions of TF, PAI-1, but also boosted AKT3 expression in vitro. More importantly, the efficacy of RUNX1 on TF, PAI-1 were all effectively reversed by down-regulation of AKT3 gene. CONCLUSION: AKT3 is an important target gene of RUNX1, through which RUNX1 exerted its regulatory role on alveolar hypercoagulation and fibrinolytic inhibition in LPS-induced ARDS. RUNX1/ATK3 signaling axis is expected to be a new target for the exploration of ARDS genesis and treatment.


Asunto(s)
Lipopolisacáridos , Síndrome de Dificultad Respiratoria , Animales , Ratas , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Regulación hacia Abajo , Lipopolisacáridos/toxicidad , Inhibidor 1 de Activador Plasminogénico/genética , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/genética
5.
Am J Med Genet A ; 194(7): e63585, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38459620

RESUMEN

Germline gain of function variations in the AKT3 gene cause brain overgrowth syndrome with megalencephaly and diffuse bilateral cortical malformations. Here we report a child with megalencephaly, who is a carrier of a novel heterozygous missense variant in the AKT3 gene NM_005465.7:c.964G>T,p.Asp322Tyr. The phenotype of this patient is associated with pituitary deficiencies diagnosed at 2 years of age: growth hormone (GH) deficiency responsible for growth delay and central hypothyroidism. After 6 months of GH treatment, intracranial hypertension was noted, confirmed by the observation of papilledema and increased intracranial pressure, requiring the initiation of acetazolamide treatment and the discontinuation of GH treatment. This is the second reported patient described with megalencephaly and AKT3 gene variant associated with GH deficiency . Other endocrine disorders have also been reported in few cases with hypothyroidism and hypoglycemia. Pituitary deficiency may be a part of the of megalencephaly phenotype secondary to germline variant in the AKT3 gene. Special attention should be paid to growth in these patients and search for endocrine deficiency is necessary in case of growth retardation or hypoglycemia.


Asunto(s)
Mutación de Línea Germinal , Megalencefalia , Mutación Missense , Proteínas Proto-Oncogénicas c-akt , Humanos , Megalencefalia/genética , Megalencefalia/patología , Mutación Missense/genética , Proteínas Proto-Oncogénicas c-akt/genética , Mutación de Línea Germinal/genética , Masculino , Preescolar , Fenotipo , Hipotiroidismo/genética , Hipotiroidismo/patología , Hipotiroidismo/complicaciones , Femenino , Hormona de Crecimiento Humana/deficiencia , Hormona de Crecimiento Humana/genética
6.
Cell Commun Signal ; 22(1): 85, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291468

RESUMEN

K-Ras is the most frequently mutated Ras variant in pancreatic, colon and non-small cell lung adenocarcinoma. Activating mutations in K-Ras result in increased amounts of active Ras-GTP and subsequently a hyperactivation of effector proteins and downstream signaling pathways. Here, we demonstrate that oncogenic K-Ras(V12) regulates tumor cell migration by activating the phosphatidylinositol 3-kinases (PI3-K)/Akt pathway and induces the expression of E-cadherin and neural cell adhesion molecule (NCAM) by upregulation of Akt3. In vitro interaction and co-precipitation assays identified PI3-Kα as a bona fide effector of active K-Ras4B but not of H-Ras or N-Ras, resulting in enhanced Akt phosphorylation. Moreover, K-Ras(V12)-induced PI3-K/Akt activation enhanced migration in all analyzed cell lines. Interestingly, Western blot analyses with Akt isoform-specific antibodies as well as qPCR studies revealed, that the amount and the activity of Akt3 was markedly increased whereas the amount of Akt1 and Akt2 was downregulated in EGFP-K-Ras(V12)-expressing cell clones. To investigate the functional role of each Akt isoform and a possible crosstalk of the isoforms in more detail, each isoform was stably depleted in PANC-1 pancreatic and H23 lung carcinoma cells. Akt3, the least expressed Akt isoform in most cell lines, is especially upregulated and active in Akt2-depleted cells. Since expression of EGFP-K-Ras(V12) reduced E-cadherin-mediated cell-cell adhesion by induction of polysialylated NCAM, Akt3 was analyzed as regulator of E-cadherin and NCAM. Western blot analyses revealed pronounced reduction of E-cadherin and NCAM in the Akt3-kd cells, whereas Akt1 and Akt2 depletion upregulated E-cadherin, especially in H23 lung carcinoma cells. In summary, we identified oncogenic K-Ras4B as a key regulator of PI3-Kα-Akt signaling and Akt3 as a crucial regulator of K-Ras4B-induced modulation of E-cadherin and NCAM expression and localization.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Moléculas de Adhesión de Célula Nerviosa , Cadherinas , Neoplasias Pulmonares/genética , Isoformas de Proteínas , Fosfatidilinositol 3-Quinasas/metabolismo , Pulmón/metabolismo , Neoplasias Pancreáticas/patología
7.
Genes Chromosomes Cancer ; 62(12): 703-709, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37395289

RESUMEN

Heterozygous germline or somatic variants in AKT3 gene can cause isolated malformations of cortical development (MCDs) such as focal cortical dysplasia, megalencephaly (MEG), Hemimegalencephaly (HME), dysplastic megalencephaly, and syndromic forms like megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome, and megalencephaly-capillary malformation syndrome. This report describes a new case of HME and capillary malformation caused by a somatic AKT3 variant that differs from the common p.E17K variant described in literature. The patient's skin biopsy from the angiomatous region revealed an heterozygous likely pathogenic variant AKT3:c.241_243dup, p.(T81dup) that may affect the binding domain and downstream pathways. Compared to previously reported cases with a common E17K mosaic variant, the phenotype is milder and patients showed segmental overgrowth, an uncommon characteristic in AKT3 variant cases. These findings suggest that the severity of the disease may be influenced not only by the level of mosaicism but also by the type of variant. This report expands the phenotypic spectrum associated with AKT3 variants and highlights the importance of genomic analysis in patients with capillary malformation and MCDs.


Asunto(s)
Megalencefalia , Malformaciones Vasculares , Humanos , Mutación , Megalencefalia/genética , Megalencefalia/patología , Malformaciones Vasculares/genética , Fenotipo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
8.
Curr Top Microbiol Immunol ; 436: 349-366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36243852

RESUMEN

AKT is a protein kinase that exists in three isoforms: AKT1, AKT2, and AKT3. Though similar in structure, these isoforms display different effects. AKT is activated downstream of PI3K, and together, this signaling pathway helps regulate cellular processes including cell growth, proliferation, metabolism, survival, and apoptosis. Disruption in these pathways has been associated with disorders including cardiovascular diseases, developmental disorders, inflammatory responses, autoimmune diseases, neurologic disorders, type 2 diabetes, and several cancers. In cancer, deregulation in the PI3K/AKT pathway can be manifested as tumorigenesis, pathological angiogenesis, and metastasis. Increased activity has been correlated with tumor progression and resistance to cancer treatments. Recent studies have suggested that inhibition of the PI3K/AKT pathway plays a significant role in the development, expansion, and proliferation of cells of the immune system. Additionally, AKT has been found to play an important role in differentiating regulatory T cells, activating B cells, and augmenting tumor immunosurveillance. This emphasizes AKT as a potential target for inhibition in cancer therapy. This chapter reviews AKT structure and regulation, its different isoforms, its role in immune cells, and its modulation in oncotherapy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Inmunidad , Fosfatidilinositol 3-Quinasas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
9.
Am J Med Genet A ; 191(5): 1442-1446, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36695285

RESUMEN

Capillary malformations are slow-flow vascular malformations that affect the microcirculation including capillaries and post capillary venules and can be associated with growth differences. Specifically, the association of capillary malformations with undergrowth is a vastly understudied vascular syndrome with few reports of genetic causes including PIK3CA, GNAQ, and GNA11. Recently, a somatic pathogenic variant in AKT3 was identified in one child with a cutaneous vascular syndrome similar to cutis marmorata telangiectatica congenita, undergrowth, and no neurodevelopmental features. Here, we present a male patient with a capillary malformation and undergrowth due to a somatic pathogenic variant in AKT3 to confirm this association. It is essential to consider that mosaic pathogenic variants in AKT3 can cause a wide spectrum of disease. There is a need for future studies focusing on capillary malformations with undergrowth to understand the underlying mechanism.


Asunto(s)
Livedo Reticularis , Telangiectasia , Malformaciones Vasculares , Niño , Humanos , Masculino , Capilares/anomalías , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/genética , Telangiectasia/genética , Síndrome , Mutación , Proteínas Proto-Oncogénicas c-akt/genética
10.
Climacteric ; 26(1): 64-71, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459490

RESUMEN

OBJECTIVE: Triple-negative breast cancer (TNBC) is highly aggressive and leads to a poor prognosis. microRNA-181a (miR-181a) exhibits strong antineoplastic effects in many types of cancer. In this study, we examine the responses of human miR-181a-transfected TNBC cells and explore the mechanisms underlying the observed effects. METHODS: A series of cellular assays were conducted using cells from the MDA-MB-231 TNBC line to assess the impact of miR-181a overexpression. The extracellular acidification rate, lactate production and glucose uptake were evaluated as a measure of aerobic glycolysis (i.e. the Warburg effect). The expressions of glycolysis-related gene were analyzed. RESULTS: Viability, migration and survival of miR-181a-transfected MDA-MB-231 cells were all significantly reduced. miR-181a inhibited glycolysis in TNBC cells by reducing the rates of glucose uptake and lactate production and a substantial downregulation of factors known to contribute to the Warburg effect, including the serine/threonine kinase, AKT3, hypoxia-inducible factor-1α (HIF-1α) and progesterone receptor membrane component 1 (PGRMC1). CONCLUSION: Our results demonstrate that miR-181a may regulate glycolysis in MDA-MB-231 TNBC cells, potentially via interference with components of the AKT3-HIF-1α and PGRMC1 pathways. These results suggest that miR-181a might be developed as a therapeutic agent for use in antineoplastic regimens directed at TNBC and PGRMC1-overexpressing breast cancers.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , MicroARNs/genética , Glucosa , Proliferación Celular , Proteínas de la Membrana , Receptores de Progesterona
11.
Clin Exp Pharmacol Physiol ; 50(6): 443-452, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36752556

RESUMEN

Hyperglycaemia-mediated endothelial-to-mesenchymal transition (EndMT) is involved in the occurrence and progression of cardiovascular complications in diabetic patients. Previous studies reported that AKT serine/threonine kinase 3 (AKT3) and Bric-a-brac/Tramtrack/Broad (BTB) and cap'n'collar (CNC) homology 1 (bach1) participates in endothelial injury and epithelial-to-mesenchymal transition. In the present study, we proposed that bach1 regulates AKT3 transcription, thus involved in hyperglycaemia-mediated EndMT in vascular endothelium. Our results indicated that hyperglycaemia/high glucose increased AKT3 expression and induced EndMT in aorta of diabetic rats and hyperglycaemic human umbilical vein endothelial cells (HUVECs). Moreover, inhibition of AKT3 expression reversed high glucose-mediated EndMT in HUVECs. Further, hyperglycaemia/high glucose augmented bach1 expression in aorta of diabetic rats and hyperglycaemic HUVECs. Furthermore, si-bach1 countered high glucose-induced AKT3 expression and EndMT in HUVECs. In addition, the effect of bach1 overexpression is similar to that of high glucose treatment, which was reversed by si-AKT3. ChIP assays found bach1 enriched in the promoter region of AKT3. Bach1 overexpression augmented AKT3 promoter activity, which lost after specific binding site mutation. Bach1 was involved in hyperglycaemia-induced EndMT via modulation of AKT3 transcription.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Humanos , Ratas , Animales , Hiperglucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Transducción de Señal , Células Endoteliales de la Vena Umbilical Humana , Glucosa/metabolismo , Transición Epitelial-Mesenquimal , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
12.
J Cell Mol Med ; 26(6): 1766-1775, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33200535

RESUMEN

Renal ischaemia-reperfusion (RI/R) injury is one major pathological state of acute kidney injury (AKI) with a mortality rate ranking 50% to 80%. MiR-144-5p acts as a molecular trigger in various diseases. We presumed that miR-144-5p might be involved RI/R injury progression. We found that RI/R injury decreased miR-144-5p expression in rat models. MiR-144-5p downregulation promoted cell apoptosis rate and activated Wnt/ß-catenin signal in RI/R injury rats. By performing bioinformatic analysis, RIP, RNA pull-down, luciferase reporter experiments, we found that circ-AKT3 sponged to miR-144-5p and decreased its expression in RI/R injury rats. Moreover, we found that circ-AKT3 promoted cell apoptosis rate and activated Wnt/ß-catenin signal, and miR-144-5p mimic reversed the promotive effect of circ-AKT3 in rat models. We also found that circ-AKT3 increased the oxidative stress level in rat models. In conclusion, our study suggests that the circAKT3 is involved RI/R injury progression through regulating miR-144-5p/Wnt/ß-catenin pathway and oxidative stress.


Asunto(s)
MicroARNs , Daño por Reperfusión , Animales , Apoptosis/genética , MicroARNs/metabolismo , Estrés Oxidativo/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , Ratas , Daño por Reperfusión/genética , beta Catenina/genética , beta Catenina/metabolismo
13.
J Gene Med ; 24(6): e3409, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35030644

RESUMEN

BACKGROUND: Accumulating evidence demonstrates that long non-coding RNAs (lncRNAs) are associated with the development of osteoporosis. The present study aimed to investigate the effect of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on osteogenic differentiation in osteoporosis. METHODS: MALAT1 levels were detected by a real-time polymerase chain reaction (RT-qPCR). Moreover, the levels of osteogenic differentiation-related factors (Bmp4, Col1a1 and Spp1) were measured by a RT-qPCR and western blotting. Alkaline phosphatase (ALP) activity was detected using an ALP staining assay. RESULTS: MALAT1 levels were downregulated in hindlimb unloading mice and simulated in microgravity (MG) treated MC3T3-E1 cells. Moreover, MG treatment induced the downregulation of the expression of ALP, BMP4, Col1a1 and Spp1, whereas overexpression of MALAT1 abolished the downregulation. MG also inhibited ALP activity, whereas MALAT1 reversed the effect. Furthermore, miR-217 was identified as a target of MALAT1, and AKT3 was verified as a target of miR-217. Overexpression of miR-217 rescued the promotion of osteogenic differentiation induced by MALAT1 in MG treated cells. Knockdown of AKT3 abolished the facilitation of osteogenic differentiation induced by downregulation of miR-217. CONCLUSIONS: MALAT1 promotes osteogenic differentiation through regulating miR-217/AKT3 axis, suggesting that MALAT1 is a potential target with respect to alleviating osteoporosis.


Asunto(s)
MicroARNs/antagonistas & inhibidores , Osteoporosis , ARN Largo no Codificante/metabolismo , Animales , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis , Osteoporosis/patología , Osteoporosis/terapia , ARN Largo no Codificante/genética
14.
Genet Med ; 24(11): 2240-2248, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35997716

RESUMEN

PURPOSE: Postzygotic (somatic) variants in the mTOR pathway genes cause a spectrum of distinct developmental abnormalities. Accurate classification of somatic variants in this group of disorders is crucial for affected individuals and their families. METHODS: The ClinGen Brain Malformation Variant Curation Expert Panel was formed to curate somatic variants associated with developmental brain malformations. We selected the genes AKT3, MTOR, PIK3CA, and PIK3R2 as the first set of genes to provide additional specifications to the 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) sequence variant interpretation guidelines, which currently focus solely on germline variants. RESULTS: A total of 24 of the original 28 ACMG/AMP criteria required modification. Several modifications used could be applied to other genes and disorders in which somatic variants play a role: 1) using variant allele fraction differences as evidence that somatic mutagenesis occurred as a proxy for de novo variation, 2) incorporating both somatic and germline evidence, and 3) delineating phenotype on the basis of variable tissue expression. CONCLUSION: We have established a framework for rigorous interpretation of somatic mosaic variants, addressing issues unique to somatic variants that will be applicable to many genes and conditions.


Asunto(s)
Encéfalo , Anomalías Congénitas , Variación Genética , Genoma Humano , Humanos , Encéfalo/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Anomalías Congénitas/genética , Pruebas Genéticas , Variación Genética/genética , Mutación , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética
15.
J Anat ; 241(2): 211-229, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35357006

RESUMEN

Brain and skull tissues interact through molecular signalling and mechanical forces during head development, leading to a strong correlation between the neurocranium and the external brain surface. Therefore, when brain tissue is unavailable, neurocranial endocasts are often used to approximate brain size and shape. Evolutionary changes in brain morphology may have resulted in secondary changes to neurocranial morphology, but the developmental and genetic processes underlying this relationship are not well understood. Using automated phenotyping methods, we quantified the genetic basis of endocast variation across large genetically varied populations of laboratory mice in two ways: (1) to determine the contributions of various genetic factors to neurocranial form and (2) to help clarify whether a neurocranial variation is based on genetic variation that primarily impacts bone development or on genetic variation that primarily impacts brain development, leading to secondary changes in bone morphology. Our results indicate that endocast size is highly heritable and is primarily determined by additive genetic factors. In addition, a non-additive inbreeding effect led to founder strains with lower neurocranial size, but relatively large brains compared to skull size; suggesting stronger canalization of brain size and/or a general allometric effect. Within an outbred sample of mice, we identified a locus on mouse chromosome 1 that is significantly associated with variation in several positively correlated endocast size measures. Because the protein-coding genes at this locus have been previously associated with brain development and not with bone development, we propose that genetic variation at this locus leads primarily to variation in brain volume that secondarily leads to changes in neurocranial globularity. We identify a strain-specific missense mutation within Akt3 that is a strong causal candidate for this genetic effect. Whilst it is not appropriate to generalize our hypothesis for this single locus to all other loci that also contribute to the complex trait of neurocranial skull morphology, our results further reveal the genetic basis of neurocranial variation and highlight the importance of the mechanical influence of brain growth in determining skull morphology.


Asunto(s)
Encéfalo , Cráneo , Animales , Evolución Biológica , Encéfalo/anatomía & histología , Cabeza , Ratones , Cráneo/anatomía & histología
16.
Cell Commun Signal ; 20(1): 179, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376971

RESUMEN

BACKGROUND: The aim of the present study was to determine the role of individual PHLPP isoforms in insulin signaling and insulin resistance in neuronal cells. METHODS: PHLPP isoforms were either silenced or overexpressed individually, and the effects were observed on individual Akt isoforms, AS160 and on neuronal glucose uptake, under insulin sensitive and resistant conditions. To determine PHLPP regulation itself, we tested effect of scaffold protein, Scribble, on PHLPP isoforms and neuronal glucose uptake. RESULTS: We observed elevated expression of both PHLPP1 and PHLPP2 in insulin resistant neuronal cells (Neuro-2A, mouse neuroblastoma; SHSY-5Y, human neuroblastoma) as well as in the whole brain lysates of high-fat-diet mediated diabetic mice. In insulin sensitive condition, PHLPP isoforms differentially affected activation of all Akt isoforms, wherein PHLPP1 regulated serine phosphorylation of Akt2 and Akt3, while PHLPP2 regulated Akt1 and Akt3. This PHLPP mediated Akt isoform specific regulation activated AS160 affecting glucose uptake. Under insulin resistant condition, a similar trend of results were observed in Akt isoforms, AS160 and glucose uptake. Over-expressed PHLPP isoforms combined with elevated endogenous expression under insulin resistant condition drastically affected downstream signaling, reducing neuronal glucose uptake. No compensation was observed amongst PHLPP isoforms under all conditions tested, indicating independent roles and pointing towards possible scaffolding interactions behind isoform specificity. Silencing of Scribble, a scaffolding protein known to interact with PHLPP, affected cellular localization of both PHLPP1 and PHLPP2, and caused increase in glucose uptake. CONCLUSIONS: PHLPP isoforms play independent roles via Scribble in regulating Akt isoforms differentially, affecting AS160 and neuronal glucose uptake. Video abstract.


Asunto(s)
Diabetes Mellitus Experimental , Resistencia a la Insulina , Neuroblastoma , Animales , Humanos , Ratones , Glucosa , Insulina/farmacología , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
17.
Fish Shellfish Immunol ; 127: 1100-1112, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35835386

RESUMEN

Plastic pollution has attracted huge attention from public and scientific community in recent years. In the environment, nanoplastics (NPs, <100 nm) can interact with persistent organic pollutants (POPs) such as perfluorooctanoic acid (PFOA) and may exacerbate associated toxic impacts. The present study aims to explore the single and combined ecotoxicological effects of PFOA and polystyrene nanoplastics (PS-NPs, 80 nm) on the PI3K/AKT3 signaling pathway using a freshwater fish model Gambusia affinis. Fish were exposed individually to PS-NPs (200 µg/L) and PFOA (50, 500, 5000 µg/L) and their chemical mixtures for 96 h. Our results showed that the co-exposure significantly altered the mRNA relative expression of PI3K, AKT3, IKKß and IL-1ß, compared to corresponding single exposure and control groups, indicating that the PFOA-NP co-exposure can activate the PI3K/AKT3 signaling pathway. The bioinformatic analyses showed that AKT3 had more probes and exhibited a significantly sensitive correlation with DNA methylation, compared to other genes (PIK3CA, IKBKB, and IL1B). Further, the mRNA expressions of PIK3CA, AKT3, and IKBKB had a significant correlation with copy number variation (CNV) in human liver hepatocellular carcinoma (LIHC). And PIK3CA had the highest mutation rate among other genes of interest for LIHC. Moreover, AKT3 showed a relatively lower expression in TAM and CAF cells, compared to PIK3CA, IKBKB, and IL1B. Besides, hsa-mir-155-5p was closely correlated with AKT3, PIK3CA, IKBKB, and IL1B. In summary, these results provide evidence that NPs could enhance the carcinogenic effects of POPs on aquatic organisms and highlight possible targets of LIHC induced by PFOA-NP co-exposure.


Asunto(s)
Ciprinodontiformes , Nanopartículas , Contaminantes Químicos del Agua , Animales , Caprilatos , Fosfatidilinositol 3-Quinasa Clase I , Ciprinodontiformes/genética , Ciprinodontiformes/metabolismo , Variaciones en el Número de Copia de ADN , Fluorocarburos , Humanos , Quinasa I-kappa B , Microplásticos/toxicidad , Nanopartículas/química , Fosfatidilinositol 3-Quinasas , Poliestirenos/toxicidad , ARN Mensajero , Contaminantes Químicos del Agua/metabolismo
18.
Hepatol Res ; 52(6): 532-545, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35187761

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a type of primary liver cancer with high mortality. Circular RNAs (circRNAs) have been confirmed to be involved in the development of HCC, but the functions of circ_0011232 in HCC remain ill-defined. METHODS: Quantitative real-time polymerase chain reaction, western blot assay, or immunohistochemistry assay was performed to determine the levels of circ_0011232, miR-503-5p, and AKT3. RNase R assay and actinomycin D assay were conducted to analyze the feature of circ_0011232. Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, flow cytometry analysis, wound-healing assay, and transwell assay were conducted to evaluate HCC cell proliferation, colony formation, apoptosis, migration, and invasion. Dual-luciferase reporter assay was carried out to confirm the relationships among circ_0011232, miR-503-5p, and AKT3. The murine xenograft assay was conducted to verify the function of circ_0011232 in tumor growth in vivo. RESULTS: Circ_0011232 and AKT3 were upregulated, while miR-503-5p was decreased in HCC tissues and cells. Circ_0011232 knockdown repressed HCC cell proliferation, colony formation, migration, and invasion, and promoted apoptosis in vitro and blocked tumor growth in vivo. MiR-503-5p was a target of circ_0011232. MiR-503-5p inhibition reversed the effects of circ_0011232 knockdown on HCC cell development. Moreover, AKT3 was confirmed to be a target of miR-503-5p, and AKT3 overexpression abolished the inhibitory effects on HCC cell progression caused by miR-503-5p. CONCLUSION: Circ_0011232 facilitated HCC progression via miR-503-5p/AKT3 axis, which might provide a novel treatment strategy for HCC.

19.
Cell Mol Life Sci ; 78(23): 7873-7898, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34724097

RESUMEN

The aim of the present study was to determine the role of Akt isoforms in insulin signaling and resistance in neuronal cells. By silencing Akt isoforms individually and in pairs, in Neuro-2a and HT22 cells we observed that, in insulin-sensitive condition, Akt isoforms differentially reduced activation of AS160 and glucose uptake with Akt2 playing the major role. Under insulin-resistant condition, phosphorylation of all isoforms and glucose uptake were severely affected. Over-expression of individual isoforms in insulin-sensitive and resistant cells differentially reversed AS160 phosphorylation with concomitant reversal in glucose uptake indicating a compensatory role of Akt isoforms in controlling neuronal insulin signaling. Post-insulin stimulation Akt2 translocated to the membrane the most followed by Akt3 and Akt1, decreasing glucose uptake in the similar order in insulin-sensitive cells. None of the Akt isoforms translocated in insulin-resistant cells or high-fat-diet mediated diabetic mice brain cells. Based on our data, insulin-dependent differential translocation of Akt isoforms to the plasma membrane turns out to be the key factor in determining Akt isoform specificity. Thus, isoforms play parallel with predominant role by Akt2, and compensatory yet novel role by Akt1 and Akt3 to regulate neuronal insulin signaling, glucose uptake, and insulin-resistance.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/patología , Resistencia a la Insulina , Insulina/farmacología , Neuroblastoma/patología , Neuronas/patología , Animales , Transporte Biológico , Membrana Celular/metabolismo , Proteínas Activadoras de GTPasa/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipoglucemiantes/farmacología , Ratones , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
Acta Med Okayama ; 76(6): 635-643, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36549765

RESUMEN

To investigate the association between serum miR-338-3p levels and neonatal acute respiratory distress syndrome (ARDS) and its mechanism. The relative miR-338-3p expression in serum was detected by quantitative real-time RT-PCR. Interleukin-1beta (IL-1ß), IL-6, and tumor necrosis factor-alpha (TNF-α) levels were detected by ELISAs. A receiver operating characteristic (ROC) curve analysis of serum miR-338-3p evaluated the diagnosis of miR-338-3p in neonatal ARDS. Pearson's correlation analysis evaluated the correlation between serum miR-338-3p and neonatal ARDS clinical factors. Flow cytometry evaluated apoptosis, and a CCK-8 assay assessed cell viability. A luciferase assay evaluated the miR-338-3p/AKT3 relationship. The miR- 338-3p expression was decreased in neonatal ARDS patients and in lipopolysaccharide (LPS)-treated cells. The ROC curve showed the accuracy of miR-338-3p for evaluating neonatal ARDS patients. The correlation analysis demonstrated that miR-338-3p was related to PRISM-III, PaO2/FiO2, oxygenation index, IL-1ß, IL-6, and TNF-α in neonatal ARDS patients. MiR-338-3p overexpression inhibited the secretion of inflammatory components, stifled cell apoptosis, and LPS-induced advanced cell viability. The double-luciferase reporter gene experiment confirmed that miR-338-3p negatively regulates AKT3 mRNA expression. Serum miR-338-3p levels were related to the diagnosis and severity of neonatal ARDS, which may be attributed to its regulatory effect on inflammatory response in ARDS.


Asunto(s)
MicroARNs , Síndrome de Dificultad Respiratoria , Recién Nacido , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Factor de Necrosis Tumoral alfa , Lipopolisacáridos , Interleucina-6 , Síndrome de Dificultad Respiratoria/genética , Biomarcadores , Inflamación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA