Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO J ; 40(3): e105784, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411331

RESUMEN

High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.


Asunto(s)
Citocinas/genética , Citocinas/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Regulación hacia Arriba , Quinasa de Linfoma Anaplásico/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Mutación con Ganancia de Función , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Análisis de Secuencia de ARN , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Proc Natl Acad Sci U S A ; 115(4): E630-E638, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29317532

RESUMEN

Mutations in anaplastic lymphoma kinase (ALK) are implicated in somatic and familial neuroblastoma, a pediatric tumor of neural crest-derived tissues. Recently, biochemical analyses have identified secreted small ALKAL proteins (FAM150, AUG) as potential ligands for human ALK and the related leukocyte tyrosine kinase (LTK). In the zebrafish Danio rerio, DrLtk, which is similar to human ALK in sequence and domain structure, controls the development of iridophores, neural crest-derived pigment cells. Hence, the zebrafish system allows studying Alk/Ltk and Alkals involvement in neural crest regulation in vivo. Using zebrafish pigment pattern formation, Drosophila eye patterning, and cell culture-based assays, we show that zebrafish Alkals potently activate zebrafish Ltk and human ALK driving downstream signaling events. Overexpression of the three DrAlkals cause ectopic iridophore development, whereas loss-of-function alleles lead to spatially distinct patterns of iridophore loss in zebrafish larvae and adults. alkal loss-of-function triple mutants completely lack iridophores and are larval lethal as is the case for ltk null mutants. Our results provide in vivo evidence of (i) activation of ALK/LTK family receptors by ALKALs and (ii) an involvement of these ligand-receptor complexes in neural crest development.


Asunto(s)
Citocinas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Quinasa de Linfoma Anaplásico , Animales , Línea Celular Tumoral , Drosophila , Ojo/metabolismo , Humanos , Linfoma/enzimología , Cresta Neural/enzimología , Células PC12 , Pigmentación , Ratas , Pez Cebra
3.
Genes Chromosomes Cancer ; 59(1): 50-57, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31340081

RESUMEN

Gain of chromosome arm 2p is a previously described entity in neuroblastoma (NB). This genomic address is home to two important oncogenes in NB-MYCN and anaplastic lymphoma kinase (ALK). MYCN amplification is a critical prognostic factor coupled with poor prognosis in NB. Mutation of the ALK receptor tyrosine kinase has been described in both somatic and familial NB. Here, ALK activation occurs in the context of the full-length receptor, exemplified by activating point mutations in NB. ALK overexpression and activation, in the absence of genetic mutation has also been described in NB. In addition, the recently identified ALK ligand ALKAL2 (previously described as FAM150B and AUGα) is also found on the distal portion of 2p, at 2p25. Here we analyze 356 NB tumor samples and discuss observations indicating that gain of 2p has implications for the development of NB. Finally, we put forward the hypothesis that the effect of 2p gain may result from a combination of MYCN, ALK, and the ALK ligand ALKAL2.

4.
J Exp Clin Cancer Res ; 41(1): 113, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351152

RESUMEN

BACKGROUND: In the last years, several efforts have been made to classify colorectal cancer (CRC) into well-defined molecular subgroups, representing the intrinsic inter-patient heterogeneity, known as Consensus Molecular Subtypes (CMSs). METHODS: In this work, we performed a meta-analysis of CRC patients stratified into four CMSs. We identified a negative correlation between a high level of anaplastic lymphoma kinase (ALK) expression and relapse-free survival, exclusively in CMS1 subtype. Stemming from this observation, we tested cell lines, patient-derived organoids and mice with potent ALK inhibitors, already approved for clinical use. RESULTS: ALK interception strongly inhibits cell proliferation already at nanomolar doses, specifically in CMS1 cell lines, while no effect was found in CMS2/3/4 groups. Furthermore, in vivo imaging identified a role for ALK in the dynamic formation of 3D tumor spheroids. Consistently, ALK appeares constitutively phosphorylated in CMS1, and it signals mainly through the AKT axis. Mechanistically, we found that CMS1 cells display several copies of ALKAL2 ligand and ALK-mRNAs, suggesting an autocrine loop mediated by ALKAL2 in the activation of ALK pathway, responsible for the invasive phenotype. Consequently, disruption of ALK axis mediates the pro-apoptotic action of CMS1 cell lines, both in 2D and 3D and enhanced cell-cell adhesion and e-cadherin organization. In agreement with all these findings, the ALK signature encompassing 65 genes statistically associated with worse relapse-free survival in CMS1 subtype. Finally, as a proof of concept, the efficacy of ALK inhibition was demonstrated in both patient-derived organoids and in tumor xenografts in vivo. CONCLUSIONS: Collectively, these findings suggest that ALK targeting may represent an attractive therapy for CRC, and CMS classification may provide a useful tool to identify patients who could benefit from this treatment. These findings offer rationale and pharmacological strategies for the treatment of CMS1 CRC.


Asunto(s)
Quinasa de Linfoma Anaplásico , Neoplasias del Colon , Citocinas , Quinasa de Linfoma Anaplásico/genética , Animales , Neoplasias del Colon/genética , Citocinas/genética , Humanos , Ligandos , Ratones , Recurrencia Local de Neoplasia
5.
J Cancer ; 12(1): 150-162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391411

RESUMEN

Anaplastic lymphoma kinase (ALK) has been described in a range of human cancers and is involved in cancer initiation and progression via activating multiple signaling pathways, such as the PI3K-AKT, CRKL-C3G, MEKK2/3-MEK5-ERK5, JAK-STAT and MAPK signal pathways. Recently ALK and LTK ligand 1 (ALKAL1) also named "augmentor-ß" or "FAM150A" is identified as a potent activating ligands for human ALK that bind to the extracellular domain of ALK. However, due to its poor stability, the mechanisms of ALKAL1 underlying the tumor progression in the human cancers including colorectal cancer have not been well documented. Herein, ALKAL1 expression was evaluated by RNA sequencing datasets from The Cancer Genome Atlas (TCGA) of 625 cases colorectal cancer, immunohistochemical analysis of 377 cases colorectal cancer tissues, and Western blotting even Real-time PCR of 10 pairs of colorectal cancer tissues and adjacent normal tissues, as well as 8 colorectal cancer cell lines. Statistical analysis was performed to explore the correlation between ALKAL1 expression and clinicopathological features in colorectal cancer. Univariate and multivariate Cox regression analysis were performed to examine the association between ALKAL1 expression and overall survival. In vitro and in vivo assays were performed to assess the biological roles of ALKAL1 in colorectal cancer. Gene set enrichment analysis (GSEA), Western blotting and luciferase assays were used to identify the underlying signal pathway involved in the tumor progression role of ALKAL1. As a result, we showed that ALKAL1 was upregulated in colorectal cancer tissues and cell lines. Upregulation of ALKAL1 correlated with tumor malignancy and poor prognosis in colorectal cancer. ALKAL1 silencing inhibited tumorigenesis, metastasis and invasion of colorectal cancer cells, and inhibited SHH signaling pathway, which is essential for ALKAL1 induced migration. Our findings reveal a new mechanism by which ALKAL1 participates in colorectal cancer migration and invasion via activating the SHH signaling pathway.

6.
Cancers (Basel) ; 13(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921066

RESUMEN

Aberrant activation of anaplastic lymphoma kinase (ALK) drives neuroblastoma (NB). Previous work identified the RET receptor tyrosine kinase (RTK) as a downstream target of ALK activity in NB models. We show here that ALK activation in response to ALKAL2 ligand results in the rapid phosphorylation of RET in NB cells, providing additional insight into the contribution of RET to the ALK-driven gene signature in NB. To further address the role of RET in NB, RET knockout (KO) SK-N-AS cells were generated by CRISPR/Cas9 genome engineering. Gene expression analysis of RET KO NB cells identified a reprogramming of NB cells to a mesenchymal (MES) phenotype that was characterized by increased migration and upregulation of the AXL and MNNG HOS transforming gene (MET) RTKs, as well as integrins and extracellular matrix components. Strikingly, the upregulation of AXL in the absence of RET reflects the development timeline observed in the neural crest as progenitor cells undergo differentiation during embryonic development. Together, these findings suggest that a MES phenotype is promoted in mesenchymal NB cells in the absence of RET, reflective of a less differentiated developmental status.

7.
Cancers (Basel) ; 13(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885007

RESUMEN

Neuroblastoma is the most common extracranial solid pediatric tumor, with around 15% childhood cancer-related mortality. High-risk neuroblastomas exhibit a range of genetic, morphological, and clinical heterogeneities, which add complexity to diagnosis and treatment with existing modalities. Identification of novel therapies is a high priority in high-risk neuroblastoma, and the combination of genetic analysis with increased mechanistic understanding-including identification of key signaling and developmental events-provides optimism for the future. This focused review highlights several recent findings concerning chromosomes 1p, 2p, and 11q, which link genetic aberrations with aberrant molecular signaling output. These novel molecular insights contribute important knowledge towards more effective treatment strategies for neuroblastoma.

8.
APMIS ; 127(5): 288-302, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30803032

RESUMEN

Over the last decade, anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase (RTK), has been identified as a fusion partner in a diverse variety of translocation events resulting in oncogenic signaling in many different cancer types. In tumors where the full-length ALK RTK itself is mutated, such as neuroblastoma, the picture regarding the role of ALK as an oncogenic driver is less clear. Neuroblastoma is a complex and heterogeneous tumor that arises from the neural crest derived peripheral nervous system. Although high-risk neuroblastoma is rare, it often relapses and becomes refractory to treatment. Thus, neuroblastoma accounts for 10-15% of all childhood cancer deaths. Since most cases are in children under the age of 2, understanding the role and regulation of ALK during neural crest development is an important goal in addressing neuroblastoma tumorigenesis. An impressive array of tyrosine kinase inhibitors (TKIs) that act to inhibit ALK have been FDA approved for use in ALK-driven cancers. ALK TKIs bind differently within the ATP-binding pocket of the ALK kinase domain and have been associated with different resistance mutations within ALK itself that arise in response to therapeutic use, particularly in ALK-fusion positive non-small cell lung cancer (NSCLC). This patient population has highlighted the importance of considering the relevant ALK TKI to be used for a given ALK mutant variant. In this review, we discuss ALK in neuroblastoma, as well as the use of ALK TKIs and other strategies to inhibit tumor growth. Current efforts combining novel approaches and increasing our understanding of the oncogenic role of ALK in neuroblastoma are aimed at improving the efficacy of ALK TKIs as precision medicine options in the clinic.


Asunto(s)
Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Neoplasias Encefálicas/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasa de Linfoma Anaplásico/genética , Neoplasias Encefálicas/genética , Fusión Génica , Humanos , Terapia Molecular Dirigida , Neuroblastoma/genética , Mutación Puntual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA