Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105591, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141769

RESUMEN

Long noncoding RNAs (lncRNAs) are specifically expressed in different diseases and regulate disease progression. To explore the functions of rheumatoid arthritis (RA)-specific lncRNA, we determined the lncRNA expression profile of fibroblast-like synoviocytes (FLS) obtained from patients with RA and osteoarthritis (OA) using a LncRNA microarray and identified up-regulated LncNFYB in RA as a potential therapeutic target. Using gain- and loss-of-function studies, LncNFYB was proven to promote FLS proliferation and cell cycle progress but not affect their invasion, migration, and apoptotic abilities. Further investigation discovered that LncRNA could combine with annexin A2 (ANXA2) and enhance the level of phospho-ANXA2 (Tyr24) in the plasma membrane area, which induced the activation of ERK1/2 to promote proliferation. These findings provide new insights into the biological functions of LncNFYB on modification of FLS, which may be exploited for the therapy of RA.


Asunto(s)
Anexina A2 , Artritis Reumatoide , Sistema de Señalización de MAP Quinasas , ARN Largo no Codificante , Sinoviocitos , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Artritis Reumatoide/fisiopatología , Proliferación Celular/genética , Células Cultivadas , Activación Enzimática/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/fisiopatología , Fosforilación/genética , Unión Proteica/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sinoviocitos/citología , Sinoviocitos/metabolismo
2.
Exp Cell Res ; 442(1): 114228, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39197578

RESUMEN

Anterior gradient-2 (AGR2) is highly expressed in several tumors and plays an important role in tumor development. However, the biological function of AGR2 in teratomas has not yet been thoroughly studied. In this study, AGR2 was found to be upregulated in teratoma tissues and in human testicular teratoma cell lines by Western blotting and qRT-PCR assays. A DNA Methylation-Specific PCR assay demonstrated that AGR2 upregulation resulted from hypomethylated AGR2 in teratoma cells. NCC-IT and NT2-D1 cells were transfected with pcDNA-AGR2 or sh-AGR2 to obtain AGR2-overexpressed or -silenced cells, and cell proliferation, invasion and glycolysis were determined using CCK-8, 5-ethynyl-2'-deoxyuridine (EdU), Transwell assays, and commercial kits. The results revealed that overexpression of AGR2 promoted teratoma cell proliferation and invasion and elevated glycolysis levels evidencing by the increase in lactate secretion, glucose consumption, ATP levels and the expression of glycolysis-related proteins, while knockdown of AGR2 showed the opposite results. The interactions between AGR2 and annexin A2 (AnXA2), as well as between AnXA2 and epidermal growth factor receptor (EGFR) were verified by co-immunoprecipitation assay. Mechanistic studies revealed that AGR2 interacts with AnXA2 and increases the level of AnXA2 to recruit more AnXA2 to EGFR, there by promoting EGFR expression. A series of rescue experiments showed that knockdown of AnXA2 or EGFR weakened the promotional effects of AGR2 overexpression on the proliferation, invasion, and glycolysis of teratoma cells. Finally, tumorigenicity assays were performed using NT2-D1 cells stably transfected with either LV-NC-shRNA or LV-shAGR2. The results showed that AGR2 knockdown significantly inhibited teratoma tumor growth in vivo. In conclusion, our data suggested that AGR2 facilitates glycolysis in teratomas through promoting EGFR expression by interacting with AnXA2, thereby promoting teratoma cells proliferation and invasion.


Asunto(s)
Anexina A2 , Proliferación Celular , Receptores ErbB , Glucólisis , Mucoproteínas , Proteínas Oncogénicas , Neoplasias Testiculares , Humanos , Mucoproteínas/genética , Mucoproteínas/metabolismo , Glucólisis/genética , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética , Animales , Proliferación Celular/genética , Masculino , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ratones , Anexina A2/metabolismo , Anexina A2/genética , Neoplasias Testiculares/patología , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Línea Celular Tumoral , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Proteínas/metabolismo , Proteínas/genética , Movimiento Celular/genética , Ratones Endogámicos BALB C , Invasividad Neoplásica
3.
J Cell Mol Med ; 28(14): e18575, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39048916

RESUMEN

In recent years, in the development of emerging immunotherapy, B7-H3 is also termed as CD276 and has become a novel chimeric antigen receptor (CAR)-T target against glioma and other tumours, and aroused extensive attention. However, B7-H3 has three isoforms (2, 3 and 4Ig) with the controversial expression and elusive function in tumour especially glioma. The current study mainly focuses on the regulatory factors and related mechanisms of generation of different B7-H3 isoforms. First, we have determined that 2Ig is dominant in glioma with high malignancy, and 4Ig is widely expressed, whereas 3Ig shows negative expression in all glioma. Next, we have further found that RNA binding protein annexin A2 (ANXA2) is essential for B7-H3 isoform maintenance, but fail to determine the choice of 4Ig or 2Ig. RNA methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and 5-methylcytosine reader Y-box binding protein 1 (YBX1) facilitate the production of 2Ig. Our findings have uncovered a series of factors (ANXA2/NSUN2/YBX1) that can determine the alternative generation of different isoforms of B7-H3 in glioma. Our result aims to help peers gain a clearer understanding of the expression and regulatory mechanisms of B7H3 in tumour patients, and to provide better strategies for designing B7H3 as a target in immunotherapy.


Asunto(s)
Anexina A2 , Antígenos B7 , Regulación Neoplásica de la Expresión Génica , Glioma , Isoformas de Proteínas , Humanos , Glioma/genética , Glioma/metabolismo , Glioma/patología , Antígenos B7/metabolismo , Antígenos B7/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Anexina A2/metabolismo , Anexina A2/genética , Línea Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología
4.
Cancer Sci ; 115(6): 1896-1909, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480477

RESUMEN

Cholangiocarcinoma (CCA) is one of the most difficult malignancies to treat as the therapeutic options are limited. Although several driver genes have been identified, most remain unknown. In this study, we identified a failed axon connection homolog (FAXC), whose function is unknown in mammals, by analyzing serially passaged CCA xenograft models. Knockdown of FAXC reduced subcutaneous tumorigenicity in mice. FAXC was bound to annexin A2 (ANXA2) and c-SRC, which are tumor-promoting genes. The FAXC/ANXA2/c-SRC complex forms in the mitochondria. FAXC enhances SRC-dependent ANXA2 phosphorylation at tyrosine-24, and the C-terminal amino acid residues (351-375) of FAXC are required for ANXA2 phosphorylation. Transcriptome data from a xenografted CCA cell line revealed that FAXC correlated with epithelial-mesenchymal transition, hypoxia, and KRAS signaling genes. Collectively, these findings advance our understanding of CCA tumorigenesis and provide candidate therapeutic targets.


Asunto(s)
Anexina A2 , Neoplasias de los Conductos Biliares , Carcinogénesis , Colangiocarcinoma , Mitocondrias , Familia-src Quinasas , Animales , Humanos , Masculino , Ratones , Anexina A2/metabolismo , Anexina A2/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Mitocondrias/metabolismo , Fosforilación , Transducción de Señal , Familia-src Quinasas/metabolismo , Familia-src Quinasas/genética
5.
FASEB J ; 37(7): e22974, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249328

RESUMEN

Given the important role of m6A, the most common and reversible mRNA modification, in the pathogenesis of ischemic stroke, this study investigates the mechanisms of m6A methyltransferase METTL3 in neuronal damage in ischemic stroke. In silico analysis was used to pinpoint the expression of ANXA2, which was verified in clinical peripheral blood samples. SD rats were used for middle cerebral artery occlusion (MCAO) establishment. The experimental data suggested that T lymphocytes were increased in peripheral blood samples of ischemic stroke patients and MCAO rats. The MCAO rats were treated with anti-ANXA2 alone or combined with RP101075 (T lymphocyte infiltration inhibitor), followed by brain injury assessment. Oxygen-glucose deprivation/reoxygenation (OGD/R) was induced in primary cortical neurons, where shRNAs targeting ANXA2 or METTL3, or overexpression plasmids of METTL3 were introduced to verify the regulatory function for METTL3. Inhibition of T lymphocyte migration to the ischemic brain reduced brain injury in MCAO rats and neuronal damage in OGD/R-exposed neurons. Ablation of ANXA2 in T lymphocytes inhibited the migration of T lymphocytes to the ischemic brain and reduced neuronal damage. Mechanistically, METTL3 reduced ANXA2 expression in T lymphocytes through m6A modification and inhibited p38MAPK/MMP-9 pathway activation, exerting protective effects against neuronal damage in ischemic stroke. Overall, this study reveals the neuroprotective effects of METTL3-mediated ANXA2/p38MAPK/MMP-9 inhibition against ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratas , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Metaloproteinasa 9 de la Matriz , Neuroprotección , Ratas Sprague-Dawley , Accidente Cerebrovascular/patología , Humanos
6.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 199-209, 2024 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-38298057

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) accounts for approximately 15% of primary liver cancers, and the incidence rate has been increasing in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to identify signature genes. The aim of this study is to screen the signature genes of ICC and find the potential target for the treatment of ICC. We find that UBA3 is highly expressed in ICC, and knockdown of UBA3 inhibits ICC proliferation, invasion and migration. Mechanistic experiments show that UBA3 promotes ICC proliferation, invasion and migration by affecting ANXA2 through the MAPK signaling pathway. UBA3 is a target of bufalin, and bufalin targeting UBA3 inhibits ICC development and progression through the MAPK signaling pathway. In conclusion, our study shows that bufalin inhibits ICC by targeting UBA3, which has emerged as a new biomarker and potential therapeutic target for ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Enzimas Activadoras de Ubiquitina , Humanos , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Transducción de Señal , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo
7.
Medicina (Kaunas) ; 60(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39064529

RESUMEN

Background and Objectives: Parathyroid adenoma is a distinct cause of primary hyperparathyroidism, with the vast majority being sporadic ones. Proteomic analysis of parathyroid adenomas has proposed a large number of related proteins. The aim of this study is to evaluate the immunohistochemical staining of ANXA2, MED12, MAPK1 and VDR in parathyroid adenoma tissue. Materials and Methods: Fifty-one parathyroid adenomas were analyzed for ANXA2, MED12, MAPK1 and VDR expressions. Tissue was extracted from formalin-fixed paraffin-embedded parathyroid adenoma specimens; an immunohistochemical study was applied, and the percentage of allocation and intensity were evaluated. Results: ANXA2 stained positively in 60.8% of all cell types, while MED12 had positive staining in 66%. MAPK1 expression was found to be negative in total, although a specific pattern for oxyphil cells was observed, as they stained positive in 17.7%. Finally, VDR staining was positive at 22.8%, based on nuclear staining. Conclusions: These immunohistochemical results could be utilized as biomarkers for the diagnosis of sporadic parathyroid adenoma. It is of great importance that a distinct immunophenotype of nodule-forming cells in a positive adenoma could suggest a specific pattern of adenoma development, as in hereditary patterns.


Asunto(s)
Adenoma , Neoplasias de las Paratiroides , Humanos , Neoplasias de las Paratiroides/patología , Femenino , Proyectos Piloto , Persona de Mediana Edad , Adulto , Inmunohistoquímica/métodos , Anciano , Receptores de Calcitriol/análisis , Biomarcadores de Tumor/análisis , Biomarcadores/análisis
8.
Biochem Biophys Res Commun ; 649: 93-100, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36758484

RESUMEN

Our recent study suggests that FBXW7 loss of function plays a critical function in esophageal cancer. However, the mechanism of FBXW7 in promoting esophageal cancer is still unclear. Here, we explored the interaction protein of FBXW7 by screening of GST-pulldown and LC-MS/MS analysis in esophageal squamous cell carcinoma (ESCC) and identified ANXA2 as a potential target of FBXW7. FBXW7 loss of function could restore the expression of ANXA2 and promote the malignant biological characteristics of ESCC cells in vitro. Up-regulation of ANXA2 enhances the ERK pathway in ESCC. Furthermore, the 23rd tyrosine residue of ANXA2, phosphorylated by SRC, was regarded as playing important roles in the FBXW7-related degradation system. In clinical samples, we found that ANXA2 had high expression in ESCC tissues. High ANXA2 was associated with poor tumor staging. More importantly, we designed a combination regimen including SCH779284, a clinical ERK inhibitor against the phosphorylation of EKR and siRNA targeting ANXA2 by intratumor injection, and it produced potent inhibitory effects on the growth of xenograft tumors in vivo. In conclusion, this study provided evidence that FBXW7 loss of function could promote esophageal cancer through ANXA2 overexpression, and this novel regulation pathway may be used as an efficient target for ESCC treatment.


Asunto(s)
Anexina A2 , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/patología , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Carcinoma de Células Escamosas/patología , Fosforilación , Cromatografía Liquida , Espectrometría de Masas en Tándem , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Anexina A2/metabolismo
9.
Biochem Biophys Res Commun ; 676: 198-206, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37536195

RESUMEN

BACKGROUND: Cisplatin (CDDP) is a mainstay chemotherapeutic agent for OS treatment, but drug resistance has become a hurdle to limit its clinical effect. Autophagy plays an important role in CDDP resistance in OS, and in the present study we explored the role of ANXA2 and Rac1 in dictating CDDP sensitivity in OS cells. METHODS: ANXA2 and Rac1 expression levels were examined by Western blot and autophagy induction was detected by transmission electron miscroscope (TEM) in the clinical samples and OS cell lines. CDDP resistant cells were established by exposing OS cells to increasing doses of CDDP. The effects of ANXA2 and Rac1 knockdown on CDDP sensitivity were evaluated in the cell and animal models. RESULTS: Reduced autophagy was associated with the increased expression of ANXA2 and Rac1 in CDDP resistant OS tumor samples and cells. Autophagy suppression promoted CDDP resistance and inducing autophagy re-sensitized the resistant cells to CDDP treatment in vitro and in vivo. Further, knocking down ANXA2 or Rac1 re-activated autophagy and attenuated CDDP resistance in OS cells. We further demonstrated that CDDP resistant OS cells displayed a poorer osteogenic differentiation state when compared to the parental cell lines, which was significantly reversed by autophagy re-activation and ANXA2 or Rac1 silencing. CONCLUSION: Our findings revealed a complicated interplay of ANXA2/Rac1, autophagy induction, and osteogenic differentiation in dictating CDDP resistance in OS cells, suggesting ANXA2 and Rac1 as promising targets to modulate autophagy and overcome CDDP resistance in OS cells.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Osteosarcoma , Animales , Cisplatino/farmacología , Cisplatino/uso terapéutico , Osteogénesis , Línea Celular Tumoral , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Autofagia , Resistencia a Antineoplásicos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis
10.
J Transl Med ; 21(1): 900, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082327

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) accounts for about 15% of primary liver cancer, and the incidence rate has been rising in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to find its signature genes and therapeutic drug. Here, we studied that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the occurrence and metastasis of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. METHODS: IC50 of bufalin in ICC cells was determined by CCK8 and invasive and migratory abilities were verified by wound healing, cell cloning, transwell and Western blot. IF and IHC verified the expression of CAMKK2 between ICC patients and normal subjects. BLI and pull-down demonstrated the binding ability of bufalin and CAMKK2. Bioinformatics predicted whether CAMKK2 was related to the Wnt/ß-catenin pathway. SKL2001, an activator of ß-catenin, verified whether bufalin acted through this pathway. In vitro and in vivo experiments verified whether overexpression of CAMKK2 affects the proliferative and migratory effects of ICC. Transmission electron microscopy verified mitochondrial integrity. Associated Ca2+ levels verified the biological effects of ANXA2 on ICC. RESULTS: It was found that bufalin inhibited the proliferation and migration of ICC, and CAMKK2 was highly expressed in ICC, and its high expression was positively correlated with poor prognosis.CAMKK2 is a direct target of bufalin, and is associated with the Wnt/ß-catenin signaling pathway, which was dose-dependently decreased after bufalin treatment. In vitro and in vivo experiments verified that CAMKK2 overexpression promoted ICC proliferation and migration, and bufalin reversed this effect. CAMKK2 was associated with Ca2+, and changes in Ca2+ content induced changes in the protein content of ANXA2, which was dose-dependently decreasing in cytoplasmic ANXA2 and dose-dependently increasing in mitochondrial ANXA2 after bufalin treatment. In CAMKK2 overexpressing cells, ANXA2 was knocked down, and we found that reversal of CAMKK2 overexpression-induced enhancement of ICC proliferation and migration after siANXA2. CONCLUSIONS: Our results suggest that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the proliferation and migration of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. Thus, bufalin, as a drug, may also be used for cancer therapy in ICC in the future.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Enfermedades Mitocondriales , Humanos , Vía de Señalización Wnt , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Enfermedades Mitocondriales/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo
11.
Mol Biol Rep ; 50(5): 4505-4515, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37024747

RESUMEN

BACKGROUND: Long intergenic non-coding RNA 460 (LINC00460) as a potential oncogene and Annexin A2 (ANXA2) as a promoter in different cancer progression processes was considered. A significant relationship between the LINC00460 and ANXA2 has been recently discovered in colorectal cancer (CRC). Therefore, defining molecular biomarkers accompanied by lesion histopathologic features can be a suggestive prognostic biomarker in precancerous polyps. This study aimed to investigate the elusive expression pattern of ANXA2 and LINC00460 in polyps. MATERIALS AND METHODS: The construction of the co-expression and correlation network of LINC00460 and ANXA2 was plotted. LINC00460 and ANXA2 expression in 40 colon polyps was quantified by reverse transcription-real-time polymerase chain reaction. The receiver operating characteristic (ROC) curve was designed for distinguishing the high-risk precancerous lesion from the low-risk. Further, bioinformatics analysis was applied to find the shared MicroRNA-Interaction-Targets (MITs) between ANXA2 and LINC00460, and the associated pathways. RESULTS: ANXA2 has a high co-expression rank with LINC00460 in the lncHUB database. Overexpression of ANXA2 and LINC00460 was distinguished in advanced adenoma polyps compared to the adjacent normal samples. The estimated AUC for ANXA2 and LINC00460 was 0.88 - 0.85 with 93%-90% sensitivity and 81%-70% specificity. In addition, eight MITs were shared between ANXA2 and LINC00460. Enrichment analysis detected several GO terms and pathways, including HIF-1α associated with cancer development. CONCLUSION: In conclusion, the expression of the ANXA2 and LINC00460 were significantly elevated in pre-cancerous polyps, especially in high-risk adenomas. Collectively, ANXA2 and LINC00460 may be administered as potential prognostic biomarkers in patients with a precancerous large intestine lesion as an alarming issue.


Asunto(s)
Anexina A2 , Pólipos del Colon , MicroARNs , Lesiones Precancerosas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Anexina A2/genética , Anexina A2/metabolismo , Pólipos del Colon/genética , Pronóstico , MicroARNs/genética , Lesiones Precancerosas/genética
12.
J Endocrinol Invest ; 46(4): 749-761, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36224454

RESUMEN

BACKGROUND: Papillary thyroid cancer (PTC) is life-threatening due to its malignant progression. Considerable evidence demonstrates that circular RNA (circRNA) regulates PTC development. This study aims to explore the mechanism of circ_0000644 modulating PTC malignant progression. METHODS: The RNA levels of circ_0000644, microRNA-671-5p (miR-671-5p) and annexin A2 (ANXA2) were detected by quantitative real-time polymerase chain reaction. Western blot was performed to check protein expression. Cell proliferation and cell apoptosis were investigated by 5-ethynyl-29-deoxyuridine and flow cytometry. Angiogenic capacity, migration and invasion were analyzed by tube formation assay and transwell assay. The interaction between miR-671-5p and circ_0000644 or ANXA2 was identified by dual-luciferase reporter assay. Xenograft mouse model assay was performed to analyze the effect of circ_0000644 on tumor formation in vivo. RESULTS: Circ_0000644 and ANXA2 expression was significantly upregulated, while miR-671-5p was downregulated in PTC tissues and cells when compared with control groups. Circ_0000644 knockdown inhibited PTC cell proliferation, tube formation, migration, and invasion, but induced apoptosis in vitro. Moreover, circ_0000644 knockdown led to delayed tumorigenesis in vivo. In addition, circ_0000644 acted as a miR-671-5p sponge and mediated PTC cell tumor properties through miR-671-5p. ANXA2 was identified as a target gene of miR-671-5p, and its overexpression relieved miR-671-5p-induced effects in PTC cells. Furthermore, circ_0000644 depletion inhibited ANXA2 production by combining with miR-671-5p. CONCLUSION: Circ_0000644 depletion repressed PTC cell tumor properties through the miR-671-5p/ANXA2 axis.


Asunto(s)
Anexina A2 , MicroARNs , Neoplasias de la Tiroides , Humanos , Animales , Ratones , Cáncer Papilar Tiroideo/genética , Anexina A2/genética , Carcinogénesis , Proliferación Celular , Modelos Animales de Enfermedad , Neoplasias de la Tiroides/genética , MicroARNs/genética , Línea Celular Tumoral
13.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 356-366, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36916296

RESUMEN

Neuroblastoma (NB) is a pediatric cancer of the peripheral sympathetic nervous system and represents the most frequent solid malignancy in infants. Nectin2 belongs to the immunoglobulin superfamily and has been shown to play a role in tumorigenesis. In the current study, we demonstrate that serum Nectin2 level is increased in NB patients compared with that in healthy controls and Nectin2 level is correlated with neuroblastoma international neuroblastoma staging system (INSS) classification. There is a positive correlation between Nectin2 level and shorter overall survival in NB patients. Knockdown of Nectin2 reduces the migration of SH-SY5Y and SK-N-BE2 cells and induces their apoptosis and cell cycle arrest. RNA-seq analysis demonstrates that Nectin2 knockdown affects the expressions of 258 genes, including 240 that are upregulated and 18 that are downregulated compared with negative controls. qRT-PCR and western blot analysis confirm that ANXA2 expression is decreased in Nectin2-knockdown SH-SY5Y cells, consistent with the RNA-seq results. ANXA2 overexpression rescues the percentage of apoptotic NB cells induced by Nectin2 knockdown and compensates for the impact of Nectin2 knockdown on cleaved caspase3 and bax expressions. In addition, western blot analysis results show that ANXA2 overexpression rescues the effect of Nectin2 knockdown on MMP2 and MMP9 expressions. The current data highlight the importance of Nectin2 in NB progression and the potential of Nectin2 as a novel candidate target for gene therapy.


Asunto(s)
Anexina A2 , Neuroblastoma , Niño , Humanos , Lactante , Anexina A2/genética , Anexina A2/metabolismo , Anexina A2/farmacología , Apoptosis/genética , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología
14.
Biochem Genet ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001391

RESUMEN

Pancreatic cancer (PC) is one of the world's most aggressive and deadly cancers, owing to non-specific early clinical symptoms, late-stage diagnosis, and poor survival. Therefore, it is critical to identify specific biomarkers for its early diagnosis. Annexin A2 (ANXA2) is a calcium-dependent phospholipid-binding protein that has been reported to be upregulated in several cancer types, making it an emerging biomarker and potential cancer therapeutic target. However, the mechanism underlying the regulation of ANXA2 overexpression is still unclear. It is well established that genetic and epigenetic alterations may lead to widespread dysregulation of gene expression. Hence, in this study, we focused on exploring the regulatory mechanism of ANXA2 by investigating the transcriptional profile, methylation pattern, somatic mutation, and prognostic value of ANXA2 in PC using several bioinformatics databases. Our results revealed that the expression levels of ANXA2 were remarkably increased in PC tissues comparing to normal tissues. Furthermore, the high expression of ANXA2 was significantly related to the poor prognosis of PC patients. More importantly, we demonstrated for the first time that the ANXA2 promoter is hypomethylated in PC tissues compared to normal tissues which may result in ANXA2 overexpression in PC. However, more experimental research is required to corroborate our findings.

15.
Anim Biotechnol ; 34(4): 1413-1421, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35189072

RESUMEN

Annexin A2 (ANXA2) is a member of the A subfamily of a multifunctional calcium dependent membrane phospholipid binding protein family. The mRNA expression of ANXA2 is consistent with ovary function and egg laying in chickens. In this study, six nucleotide polymorphisms in the key promoter region of chicken ANXA2 gene (-2861 bp to -1394 bp), i.e.,: g.-2337 indel (GT), g.-2255 C > T, g. -2248 A > G, g.-2188 A > G, g.-2169 G > A, g.-2160 A > C, were identified. Their distributions in populations of Xinyang Brown, Recessive White Rock, Wenchang and Wenshang Barred chickens were analyzed. In the Recessive White Rock chicken population, CAA, CAG and TGG were three major haplotypes. Association analysis indicated that the individuals with diplotype TGG/TGG laid more eggs at 32 weeks, and the individual with diplotype CAG/TGG laid at the earlier age. Luciferase activity assay showed that mutation from C to T at -2255 increased trascriptional activity of chicken ANXA2, which is consistent with its effect on egg laying traits.


Asunto(s)
Pollos , Nucleótidos , Femenino , Animales , Pollos/genética , Óvulo , Regiones Promotoras Genéticas/genética , Anexinas/genética , Polimorfismo de Nucleótido Simple/genética
16.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834227

RESUMEN

Glioblastoma (GBM) is the most lethal brain cancer, causing inevitable deaths of patients owing to frequent relapses of cancer stem cells (CSCs). The significance of the NOTCH signaling pathway in CSCs has been well recognized; however, there is no NOTCH-selective treatment applicable to patients with GBM. We recently reported that Jagged1 (JAG1), a NOTCH ligand, drives a NOTCH receptor-independent signaling pathway via JAG1 intracellular domain (JICD1) as a crucial signal that renders CSC properties. Therefore, mechanisms regulating the JICD1 signaling pathway should be elucidated to further develop a selective therapeutic regimen. Here, we identified annexin A2 (ANXA2) as an essential modulator to stabilize intrinsically disordered JICD1. The binding of ANXA2 to JICD1 prevents the proteasomal degradation of JICD1 by heat shock protein-70/90 and carboxy-terminus of Hsc70 interacting protein E3 ligase. Furthermore, JICD1-driven propagation and tumor aggressiveness were inhibited by ANXA2 knockdown. Taken together, our findings show that ANXA2 maintains the function of the NOTCH receptor-independent JICD1 signaling pathway by stabilizing JICD1, and the targeted suppression of JICD1-driven CSC properties can be achieved by blocking its interaction with ANXA2.


Asunto(s)
Anexina A2 , Glioblastoma , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Línea Celular Tumoral , Glioblastoma/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Recurrencia Local de Neoplasia , Receptores Notch/metabolismo
17.
Int J Cancer ; 151(4): 497-509, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35474212

RESUMEN

Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.


Asunto(s)
Anexina A2 , Neoplasias , Anexina A2/genética , Anticuerpos Antinucleares , Línea Celular Tumoral , Transformación Celular Neoplásica , Transición Epitelial-Mesenquimal , Humanos , Inmunidad , Neovascularización Patológica
18.
Cancer Sci ; 113(7): 2288-2296, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35293080

RESUMEN

Our previous study identified annexin A2 (ANXA2) as a Gaq-interacting partner in natural killer/T cell lymphoma (NKTCL) cells transfected with the GNAQ T96S mutation vector by immunoprecipitation and mass spectrometry; however, the detailed molecular mechanisms by which GNAQ T96S might regulate ANXA2 remain to be defined in NKTCL. Herein, we found that the GNAQ T96S mutation significantly promotes the phosphorylation of ANXA2 at the Y24 site, whereas phosphorylation of ANXA2 abolishes the ability of WT GNAQ to trigger cell apoptosis. Further investigation revealed that a GNAQ T96S peptide inhibitor induced apoptosis by competing with ANXA2 binding to GNAQ T96S in NKTCL cells. In vivo animal experiments showed that a GNAQ T96S peptide inhibitor suppresses the growth of NKTCL cells carrying the GNAQ T96S mutation. Our current data suggest a role for GNAQ T96S/Src/ANXA2 in mediating the apoptosis of NKTCL cells, and the GNAQ T96S peptide could be a promising agent for therapy in NKTCL patients.


Asunto(s)
Anexina A2 , Linfoma de Células T , Linfoma , Animales , Anexina A2/genética , Anexina A2/metabolismo , Apoptosis/genética , Células Asesinas Naturales/metabolismo , Linfoma de Células T/genética , Mutación
19.
J Transl Med ; 20(1): 497, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36324154

RESUMEN

BACKGROUND: To explore the roles of Annexin A2 (ANXA2) on hepatocyte pyroptosis and hepatic fibrosis in nonalcoholic steatohepatitis (NASH) and underlying molecular mechanism. METHODS: Bioinformatics analyses were performed on transcriptome data of liver tissues from mice and patients with liver fibrosis for screening the hepatocyte pyroptosis-related differential genes. The in vivo NASH mouse model and in vitro NASH cellular model were established. The expression levels of Anxa2/ANXA2 were quantified. Then, the upstream transcription factor of Anxa2 was screened by ChIP-Seq and experimentally verified. The effects of the p-STAT3/ANXA2 axis on Caspase-1 mediated pyroptosis and fibrosis were explored by in vivo and in vitro experiments. RESULTS: Bioinformatics analyses suggested that the expression of Anxa2/ANXA2 was significantly up-regulated in liver tissues of both NASH mice and patients scoring with high pyroptotic activity. Experimental data showed that the ANXA2 expression was positively associated with the development of hepatocyte pyroptosis and fibrosis. As a transcription factor of ANXA2, p-STAT3 can bind to the promoter of Anxa2 and promote its transcription. The inhibition of p-STAT3 can significantly suppress hepatocyte pyroptosis and fibrosis, which was significantly reversed after the over-expression of Anxa2. Caspase-1 was verified as the player of the p-STAT3/ANXA2 axis to promote pyroptosis and fibrosis. By specifically inhibiting Caspase-1, the promotion effect of the p-STAT3/ANXA2 axis on pyroptosis and fibrosis can be significantly weakened. CONCLUSION: The p-STAT3 promoted Anxa2 expression at the transcription level, thus activating the Caspase-1 mediated hepatocyte pyroptosis and fibrosis in NASH.


Asunto(s)
Anexina A2 , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Anexina A2/metabolismo , Anexina A2/farmacología , Caspasa 1/metabolismo , Caspasa 1/farmacología , Fibrosis , Hepatocitos/patología , Hígado/patología , Cirrosis Hepática/complicaciones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Piroptosis
20.
J Cell Mol Med ; 25(23): 10916-10929, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34725902

RESUMEN

Ovarian cancer, one of the malignant gynaecological tumours with the highest mortality rate among female reproductive system, is prone to metastasis, recurrence and chemotherapy resistance, causing a poor prognosis. Exosomes can regulate the epithelial-mesenchymal plasticity of tumour cells, remodel surrounding tumour microenvironment, and affect tumour cell proliferation, invasion and metastasis. However, the function and mechanism of exosomes in the intraperitoneal implantation of ovarian cancer remain unclear. In this study, exosomal annexin A2 (ANXA2) derived from ovarian cancer cells was co-cultured with human peritoneal mesothelial (HMrSV5) cells; functional experiments were conducted to explore the effects of exosomal ANXA2 on the biological behaviour of HMrSV5 and the related mechanisms. This study showed that ANXA2 in ovarian cancer cells can be transferred to HMrSV5 cells through exosomes, exosomal ANXA2 can not only promote the migration, invasion and apoptosis of HMrSV5 cells, but also regulates morphological changes and fibrosis of HMrSV5 cells. Furthermore, ANXA2 promotes the mesothelial-mesenchymal transition (MMT) and degradation of the extracellular matrix of HMrSV5 cells through PI3K/AKT/mTOR pathway, finally affects pre-metastasis microenvironment of ovarian cancer, which provides a new theoretical basis for the mechanism of intraperitoneal implantation and metastasis of ovarian cancer.


Asunto(s)
Anexina A2/genética , Transición Epitelial-Mesenquimal/genética , Epitelio/patología , Exosomas/genética , Neoplasias Ováricas/genética , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Ováricas/patología , Peritoneo/patología , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/genética , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA