RESUMEN
This study was conducted to characterize carbapenemase-producing Klebsiella pneumoniae and Acinetobacter baumannii isolated from fresh vegetables in Japan. Two K. pneumoniae isolates (AO15 and AO22) and one A. baumannii isolate (AO22) were collected from vegetables in the city of Higashihiroshima, Japan, and subjected to antimicrobial susceptibility testing, conjugation experiments, and complete genome sequencing using Illumina MiniSeq and Oxford Nanopore MinION sequencing platforms. The two K. pneumoniae isolates were clonal, belonging to sequence type 15 (ST15), and were determined to carry 19 different antimicrobial resistance genes, including blaNDM-1 Both the isolates carried blaNDM-1 on a self-transmissible IncFII(K):IncR plasmid of 122,804 bp with other genes conferring resistance to aminoglycosides [aac(6')-Ib, aadA1, and aph(3')-VI], ß-lactams (blaCTX-M-15, blaOXA-9, and blaTEM-1A), fluoroquinolones [aac(6')-Ib-cr], and quinolones (qnrS1). A. baumannii AO22 carried blaOXA-66 on the chromosome, while blaOXA-72 was found as two copies on a GR2-type plasmid of 10,880 bp. Interestingly, A. baumannii AO22 harbored an AbaR4-like genomic resistance island (GI) of 41,665 bp carrying genes conferring resistance to tetracycline [tet(B)], sulfonamides (sul2), and streptomycin (strAB). Here, we identified Japanese carbapenemase-producing Gram-negative bacteria isolated from vegetables, posing a food safety issue and a public health concern. Additionally, we reported a GR2-type plasmid carrying two copies of blaOXA-72 and an AbaR4-like resistance island from a foodborne A. baumannii isolate.IMPORTANCE Carbapenemase-producing Gram-negative bacteria (CPGNB) cause severe health care-associated infections and constitute a major public health threat. Here, we investigated the genetic features of CPGNB isolated from fresh vegetable samples in Japan and found CPGNB, including Klebsiella pneumoniae and Acinetobacter baumannii, with dissimilar carbapenemases. The NDM carbapenemase, rarely described in Japan, was detected in two K. pneumoniae isolates. The A. baumannii isolate identified in this study carried blaOXA-66 on the chromosome, while blaOXA-72 was found as two copies on a GR2-type plasmid. This study indicates that even one fresh ready-to-eat vegetable sample might serve as a significant source of genes (blaNDM-1, blaOXA-72, blaCTX-M-14b, and blaCTX-M-15) encoding resistance to frontline and clinically important antibiotics (carbapenems and cephalosporins). Furthermore, the detection of these organisms in fresh vegetables in Japan is alarming and poses a food safety issue and a public health concern.