Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36971242

RESUMEN

Aedes aegypti vectors the pathogens that cause dengue, yellow fever, Zika virus, and chikungunya and is a serious threat to public health in tropical regions. Decades of work has illuminated many aspects of Ae. aegypti's biology and global population structure and has identified insecticide resistance genes; however, the size and repetitive nature of the Ae. aegypti genome have limited our ability to detect positive selection in this mosquito. Combining new whole genome sequences from Colombia with publicly available data from Africa and the Americas, we identify multiple strong candidate selective sweeps in Ae. aegypti, many of which overlap genes linked to or implicated in insecticide resistance. We examine the voltage-gated sodium channel gene in three American cohorts and find evidence for successive selective sweeps in Colombia. The most recent sweep encompasses an intermediate-frequency haplotype containing four candidate insecticide resistance mutations that are in near-perfect linkage disequilibrium with one another in the Colombian sample. We hypothesize that this haplotype may continue to rapidly increase in frequency and perhaps spread geographically in the coming years. These results extend our knowledge of how insecticide resistance has evolved in this species and add to a growing body of evidence suggesting that Ae. aegypti has an extensive genomic capacity to rapidly adapt to insecticide-based vector control.


Asunto(s)
Aedes , Genoma de los Insectos , Resistencia a los Insecticidas , Insecticidas , Animales , Aedes/genética , Dengue , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Mutación , Virus Zika , Infección por el Virus Zika , Genoma de los Insectos/efectos de los fármacos , Genoma de los Insectos/genética
2.
Exp Parasitol ; 249: 108518, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37003431

RESUMEN

Dengue is a mosquito-borne viral disease mainly transmitted by Aedes aegypti and disease control is primarily reliant on mosquito vector control strategies. In the failure of conventional vector control strategies, new strategies are being developed which specifically require the maintenance of mosquito colonies in the laboratories. Blood-feeding is an essential part of the routine colony maintenance of Ae. aegypti. Therefore, the current study was focused on developing a simplified artificial membrane-feeding device, "Hemocup" feeder out of affordable material. viz., plastic cups, styrofoam insulation system, parafilm-M, and preheated water to facilitate the Ae. aegypti artificial blood feeding. The performance of the device was compared to that of a commercially available blood-feeding device, "Hemotek", by assessing the blood-feeding rate, fecundity, and egg hatchability. Similar blood feeding rates were observed for Hemocup and Hemotek methods (91.8 ± 1.6 and 94.3 ± 1.6 respectively>0.05) as well as comparable fecundity between the two methods (20.8 ± 0.7 and 22.0 ± 1.5 respectively; p > 0.05). Furthermore, there was no statistically significant difference in egg hatchability between the two methods (91.9 ± 1.4 and 93.8 ± 1.4, respectively; p > 0.05). The results indicate that this simple Hemocup blood-feeding system can be used for routine colonization of laboratory strains of Ae. aegypti and for mass-rearing purposes.


Asunto(s)
Aedes , Dengue , Animales , Sri Lanka , Mosquitos Vectores , Fertilidad , Insectos Vectores , Dengue/prevención & control
3.
J Vector Borne Dis ; 60(4): 393-400, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38174517

RESUMEN

Background & objectives: Mosquito-borne diseases are major threats to human health worldwide. Successful control of vector mosquitoes requires periodic updates on their response to the insecticides that are in use. Different classes of neurotoxic insecticides have been used in vector control programs. Ae. aegypti and Ae. albopictus are the primary vectors of dengue and have developed resistance to organophosphates and synthetic pyrethroids that are used in vector control programs. Monitoring insecticide pressure and studying the underlying mechanisms of resistance in the field populations of Aedes aegypti are important to formulate resistant management strategies for their control programs. Methods: Aedes aegypti were collected from study sites Lawspet and Abishegapakkam and F1 progeny was subject to biochemical assays to determine the enzyme activity. Insecticide susceptibility tests were conducted to determine vector susceptibility/resistance to malathion and deltamethrin. Adult dried mosquitoes were subjected to multiplex PCR to detect point mutation in the VGSC gene. Results: Insecticide susceptibility test results revealed that Aedes aegypti is resistant to malathion and incipient resistance to deltamethrin has emerged. It was observed that ß-esterase and monoxygense activity were significantly higher in Lawspet sample than the laboratory strain, whereas it was comparatively lower in Abishegapakkam sample than laboratory strain. Multiplex PCR assays showed no kdr mutation in all Ae. aegypti strains. Interpretation & conclusion: Monitoring insecticide resistance in Ae. aegypti would help the local health authorities to implement a rationalized approach for insecticide use in vector control.


Asunto(s)
Aedes , Insecticidas , Piretrinas , Animales , Humanos , Insecticidas/farmacología , Aedes/genética , Malatión/farmacología , Piretrinas/farmacología , Resistencia a los Insecticidas/genética
4.
Exp Parasitol ; 236-237: 108235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35247382

RESUMEN

Ae. aegypti is an important vector for transmission of some dangerous arboviral diseases, including Dengue Fever. The present study was conducted (from August 2017 to January 2020) to survey the fauna of Culicine mosquitoes, emphasizing the existence of this invasive species in oriental parts of the country located near the Persian Gulf. Different sampling methods were used to collect all life stages of the mosquito. After morphological identification, a molecular study based on Cytochrome Oxidase (COI) gene-specific primers was performed. Then, the COI gene was sequenced via the Sanger method. A total of 4843 adults and 11,873 larvae were collected (8 species of Culex, one species of Culiseta, and 5 species of Aedes). Fifty-five Ae. aegypti specimens (8 adults and 47 larvae) were identified. Based on the biology and ecological requirements of Ae. aegypti, the possibility of the permanent establishment of this species in the tropical climate of the region is very likely. Considering the detection of this invasive vector mosquito species in Iran and the high incidence of some arboviral diseases in the neighboring countries, and continuous movements of the settlers of these areas, potential outbreaks of arboviral diseases can be predicted. Planning and implementing an immediate surveillance and control program of the vector mosquito is vital to prevent the permanent establishment of this invasive vector mosquito species in southern Iran.


Asunto(s)
Aedes , Culex , Culicidae , Aedes/genética , Animales , Complejo IV de Transporte de Electrones/genética , Especies Introducidas , Irán , Larva/genética , Mosquitos Vectores/genética
5.
Pestic Biochem Physiol ; 187: 105209, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36127073

RESUMEN

Insecticide resistance monitoring is essential in assessing the efficacy of vector control measures. However, gold standard PCR-based molecular analyses for insecticide resistance detection are often hindered by time-consuming sample processing, as well as considerable infrastructure and resourcing requirements. In this study, we combined a novel one-step sample preparation reagent with a rapid isothermal molecular test that detects a knock down resistance (kdr) mutation (F1534C) that enables pyrethroid resistance in Aedes aegypti mosquitoes. We trialled the rapid F1534C pyrethroid resistance test using insecticide resistant Ae. aegypti mosquito bodies and compared results to a conventional, allele-specific quantitative PCR (AS-qPCR) coupled with melt curve genotyping in corresponding mosquito heads. From a strain of Ae. aegypti established from an insecticide resistant population in Merida, Mexico (n = 27), all the mosquito bodies (n = 27) tested positive with the rapid F1534C test regardless of whether they were homozygous or heterozygous. To assess diagnostic test specificity, we confirmed that F1534 was not detected in laboratory-reared, fully susceptible Ae. aegypti mosquito bodies (n = 28) using the rapid F1534C test or the conventional AS-qPCR melt curve analysis. All corresponding mosquito heads (n = 28) were homozygous wild-type FF1534. The rapid F1534C test thus demonstrated 100% diagnostic sensitivity (95% CI: 87.23% to 100%) and 100% diagnostic specificity (95% CI: 87.66% to 100.00%) for detection of the F1534C pyrethroid resistant single nucleotide polymorphism (SNP) in both heterozygous and homozygous Ae. aegypti. In the collection of mutant mosquitoes from Mexico, CC1534 homozygous mutants occurred at a frequency of 74.1% (n = 20) and FC heterozygous mutants at a frequency of 25.9% (n = 7). The rapid F1534C test significantly reduced the sample processing and testing time from approximately 6 h for the AS-qPCR melt curve analysis to only 25 min. These results demonstrate significant potential for our approach to resistance testing as a field-based, low-resource, rapid alternative to time-consuming and expensive laboratory-based detection.


Asunto(s)
Aedes , Insecticidas , Piretrinas , Aedes/genética , Animales , Insecticidas/farmacología , Mosquitos Vectores/genética , Mutación , Piretrinas/farmacología , Recombinasas/genética
6.
Environ Res ; 200: 111333, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34051198

RESUMEN

The frequent application of synthetic insecticides creates resistance among insects, including mosquitoes, and causes environmental pollution and health issues. The current work aim at assessing the possibilities to produce and characterize the titanium dioxide (TiO2) nanoparticles (TiO2 NPs) mediated through the aqueous leaf extract of Pouteria campechiana, and their larvicidal and pupicidal activities against Aedes aegypti. The attained results showed that the aqueous leaf extract of P. campechiana had the efficiency to fabricate TiO2 NPs from TiO2. Under the UV-vis spectrum analysis, a sharp peak was recorded at 320 nm, which indicated the production of TiO2 NPs by the plant extract. The SEM analysis revealed that the synthesized TiO2 NPs were spherical, and 5 dissimilar diffractions were detected in the XRD spectrum analysis related to the TiO2 NPs. In FTIR analysis, a prominent peak was found at 1052.41 cm-1, corresponding to alcohol, and confirmed metal reduction. In the EDX analysis, there was a signal of around 58.44%, confirming the decrease in Ti from TiO2 NPs, and the remaining percentages were Ca, Al, and Mg. About 900 µg mL-1 of TiO2 NPs had excellent lethal activity against various larvae and pupa stages of Ae. aegypti. The attained results showed that the P. campechiana aqueous leaf extract could reduce TiO2 into TiO2 NPs and could be considered a mosquito control agent. Furthermore, this is the initial report about the aqueous leaf extract of P. campechiana effectively synthesizing the TiO2 NPs with anti-mosquito activity.


Asunto(s)
Aedes , Nanopartículas del Metal , Pouteria , Animales , Nanopartículas del Metal/toxicidad , Extractos Vegetales/farmacología , Plata , Titanio
7.
Exp Parasitol ; 226-227: 108120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34089701

RESUMEN

The bio-efficacy of crude ethyl acetate extract, fractions and a compound phenyl acetic acid from the ethyl acetate extract of Streptomyces collinus was evaluated on Culex quinquefasciatus Say and Aedes aegypti L. mosquitoes (Diptera: Culicidae). The larvae were exposed to concentrations of 2.5, 5.0, 7.5 and 10.0 ppm for fractions and 0.5, 1.0, 1.5 and 2.0 ppm for compound. After 24 h, the larval mortality was assessed and the LC50 and LC90 values were calculated. Similarly, per cent ovicidal activity was calculated for eggs after 120 h post treatment for phenyl acetic acid. Among the eleven fractions screened, fraction 7 from the ethyl acetate extract of Streptomyces collinus exhibited good larvicidal activity against both mosquito species. The LC50 and LC90 values of fraction 7 were 4.42, 6.23 ppm against Cx. quinquefasciatus larvae and 5.13, 14.51 ppm against Ae. aegypti larvae, respectively. Further, the isolated compound, phenyl acetic acid from fraction 7 recorded 100% larvicidal activity at 2 ppm concentration with LC50 and LC90 values of 2.07, 4.87 ppm on Cx. quinquefasciatus larvae and 3.81, 9.87 ppm on Ae. aegypti larvae, respectively. Phenyl acetic acid presented 50.3% and 42.0% ovicidal activity against Cx. quinquefasciatus and Ae. aegypti eggs at 2 ppm concentration after 120 h post treatment. The compound, phenyl acetic acid could be used in mosquito control programme.


Asunto(s)
Aedes , Culex , Fenilacetatos , Streptomyces/química , Aedes/efectos de los fármacos , Aedes/enzimología , Aedes/crecimiento & desarrollo , Análisis de Varianza , Animales , Bioensayo , Culex/efectos de los fármacos , Culex/enzimología , Culex/crecimiento & desarrollo , Esterasas/antagonistas & inhibidores , Glutatión Transferasa/antagonistas & inhibidores , India , Larva/efectos de los fármacos , Dosificación Letal Mediana , Óvulo/efectos de los fármacos , Fenilacetatos/química , Fenilacetatos/aislamiento & purificación , Fenilacetatos/farmacología
8.
BMC Genomics ; 21(1): 143, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041546

RESUMEN

BACKGROUND: Successful mating of female mosquitoes typically occurs once, with the male sperm being stored in the female spermatheca for every subsequent oviposition event. The female spermatheca is responsible for the maintenance, nourishment, and protection of the male sperm against damage during storage. Aedes aegypti is a major vector of arboviruses, including Yellow Fever, Dengue, Chikungunya, and Zika. Vector control is difficult due to this mosquito high reproductive capacity. RESULTS: Following comparative RNA-seq analyses of spermathecae obtained from virgin and inseminated females, eight transcripts were selected based on their putative roles in sperm maintenance and survival, including energy metabolism, chitin components, transcriptional regulation, hormonal signaling, enzymatic activity, antimicrobial activity, and ionic homeostasis. In situ RNA hybridization confirmed tissue-specific expression of the eight transcripts. Following RNA interference (RNAi), observed outcomes varied between targeted transcripts, affecting mosquito survival, egg morphology, fecundity, and sperm motility within the spermathecae. CONCLUSIONS: This study identified spermatheca-specific transcripts associated with sperm storage in Ae. aegypti. Using RNAi we characterized the role of eight spermathecal transcripts on various aspects of female fecundity and offspring survival. RNAi-induced knockdown of transcript AeSigP-66,427, coding for a Na+/Ca2+ protein exchanger, specifically interfered with egg production and reduced sperm motility. Our results bring new insights into the molecular basis of sperm storage and identify potential targets for Ae. aegypti control.


Asunto(s)
Aedes/genética , Copulación , Genes de Insecto/fisiología , Inseminación , Mosquitos Vectores/genética , Motilidad Espermática , Animales , Femenino , Fertilidad/genética , Técnicas de Silenciamiento del Gen , Masculino , Interferencia de ARN , RNA-Seq , Espermatozoides/fisiología , Transcriptoma
9.
Proc Natl Acad Sci U S A ; 114(1): 119-124, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27994145

RESUMEN

Zika, a mosquito-borne viral disease that emerged in South America in 2015, was declared a Public Health Emergency of International Concern by the WHO in February of 2016. We developed a climate-driven R0 mathematical model for the transmission risk of Zika virus (ZIKV) that explicitly includes two key mosquito vector species: Aedes aegypti and Aedes albopictus The model was parameterized and calibrated using the most up to date information from the available literature. It was then driven by observed gridded temperature and rainfall datasets for the period 1950-2015. We find that the transmission risk in South America in 2015 was the highest since 1950. This maximum is related to favoring temperature conditions that caused the simulated biting rates to be largest and mosquito mortality rates and extrinsic incubation periods to be smallest in 2015. This event followed the suspected introduction of ZIKV in Brazil in 2013. The ZIKV outbreak in Latin America has very likely been fueled by the 2015-2016 El Niño climate phenomenon affecting the region. The highest transmission risk globally is in South America and tropical countries where Ae. aegypti is abundant. Transmission risk is strongly seasonal in temperate regions where Ae. albopictus is present, with significant risk of ZIKV transmission in the southeastern states of the United States, in southern China, and to a lesser extent, over southern Europe during the boreal summer season.


Asunto(s)
El Niño Oscilación del Sur , Modelos Estadísticos , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/transmisión , Virus Zika , Aedes , Animales , Haplorrinos , Humanos , Mosquitos Vectores , Riesgo , Uganda , Infección por el Virus Zika/mortalidad
10.
Parasitol Res ; 119(7): 2075-2083, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32458116

RESUMEN

Aedes aegypti represents one of the main vectors of at least five relevant arthropod-borne viral infections in humans (i.e., Rift Valley fever, Dengue fever, Zika, chikungunya, and yellow fever) worldwide. Ae. aegypti control strategies are mostly based on using chemical insecticides (i.e., organophosphates, pyrethroids, carbamates, and organochlorines) and reducing larval sources. Furthermore, monitoring the growth activity and mapping the geographical distribution of insecticide resistance are mandatory, as recommended by the WHO. Accordingly, we conducted a study on the possible mechanism by which Ae. aegypti develops resistance to several frequently used chemical insecticides (i.e., λ-cyhalothrin, bendiocarb, cyfluthrin, deltamethrin, malathion, and permethrin) in the city of Makassar, Sulawesi, Indonesia. The results showed the progression of resistance toward the examined insecticides in Ae. aegypti populations in Makassar. The mortality rate of Ae. aegypti was less than 90%, with the highest resistance recorded against 0.75% permethrin. The molecular evaluation of the voltage-gated sodium channel gene (VGSC) showed a significant correlation of the V1016G gene mutation in the tested 0.75% permethrin-resistant Ae. aegypti phenotypes. Nevertheless, the F1534C point mutation in the VGSC gene of Ae. aegypti did not show a significant correlation with the phenotype exhibiting insecticide resistance to 0.75% permethrin. These results indicate that Ae. aegypti mosquitoes in Makassar City have developed resistance against the frequently used insecticide permethrin, which might spread to less-populated regions of Sulawesi. Therefore, we call for further entomological monitoring of insecticide resistance not only on Sulawesi but also on other closely located islands of the Indonesian archipelago to delay the spread of Ae. aegypti insecticide resistance.


Asunto(s)
Aedes/genética , Resistencia a los Insecticidas/genética , Insecticidas , Mosquitos Vectores/genética , Mutación , Canales de Sodio Activados por Voltaje/genética , Animales , Indonesia
11.
Trop Med Int Health ; 24(11): 1311-1319, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31483936

RESUMEN

BACKGROUND: Aedes aegypti and Aedes albopictus are the main mosquito species responsible for dengue virus (DENV) transmission to humans in the tropical and subtropical regions of the world. The role of vertical transmission in the epidemiology of dengue and the maintenance of this arbovirus in nature during interepidemic periods remain poorly understood, and DENV vertical transmission could sustain the existence of virus reservoirs within Aedes populations. METHODS: Between April 2011 and October 2012, we monitored vertical transmission of DENV in Ae. aegypti and Ae. albopictus in 9 cities of 4 Mexican states. Aedes eggs were collected in ovitraps, then adults were reared under laboratory conditions and their heads were used to infect C6/36 cells. The presence of flavivirus was detected by immunofluorescence assays (IFA), and DENV infection was confirmed by RT-PCR. RESULTS: About 96% of reared adults were Ae. aegypti and 4.0% were Ae. albopictus. No infection was detected in Ae. albopictus, whereas 54 of 713 (7.8%) of Ae. aegypti pools tested positive. A minimum infection rate (MIR) of 2.52 per 1000 mosquitoes was estimated for Ae. aegypti. DENV-1, DENV-2 & DENV-3 serotypes were detected even during interepidemic periods. CONCLUSIONS: This study reports the evidence of vertical transmission of dengue virus with viral isolation and molecular confirmation in Ae. aegypti eggs collected in four endemic regions of Central and Southern Mexico. Vertical transmission may play a role as a reservoir mechanism during mosquito dormancy in interepidemic periods but with minor participation in transmission during epidemic periods.


TRANSMISSION VERTICALE DU VIRUS DE LA DENGUE CHEZ AEDES AEGYPTI ET SON RÔLE DANS LA PERSISTANCE ÉPIDÉMIOLOGIQUE DE LA DENGUE DANS LE CENTRE ET LE SUD DU MEXIQUE: OBJECTIF: Aedes aegypti et Aedes albopictus sont les principales espèces de moustiques responsables de la transmission du virus de la dengue (DENV) à l'homme dans les régions tropicales et subtropicales du monde. Le rôle de la transmission verticale dans l'épidémiologie de la dengue et le maintien de cet arbovirus dans la nature pendant les périodes d'inter-épidémiques restent mal compris, et la transmission verticale du DENV pourrait maintenir l'existence de réservoirs de virus au sein des populations d'Aedes. Notre objectif était d'évaluer la transmission verticale du DENV au Mexique. MÉTHODES: Entre avril 2011 et octobre 2012, nous avons surveillé la transmission verticale du DENV chez Ae. aegypti et Ae. albopictus dans 9 villes de 4 états mexicains. Les œufs d'Aedes ont été collectés dans des ovitraps, puis les adultes ont été élevés dans des conditions de laboratoire et leur tête a été utilisée pour infecter les cellules C6/36. La présence de flavivirus a été détectée par des tests d'immunofluorescence (IFA) et l'infection par DENV a été confirmée par RT-PCR. RÉSULTATS: 96% des adultes élevés étaient Ae. aegypti et 4,0% étaient Ae. albopictus. Aucune infection n'a été détectée chez Ae. albopictus, alors que 54 des 713 (7,8%) des pools d'Ae. aegypti ont été testés positifs. Un taux d'infection minimum (MIR) de 2,52 pour 1000 moustiques a été estimé pour Ae. aegypti. Les sérotypes DENV-1, DENV-2 et DENV-3 ont été détectés même pendant les périodes inter-épidémiques. CONCLUSIONS: Cette étude rapporte les preuves de transmission verticale du virus de la dengue avec isolement viral et confirmation moléculaire dans les œufs d'Ae. Aegypti collectés dans quatre régions d'endémie du centre et du sud du Mexique. La transmission verticale pourrait jouer un rôle de mécanisme réservoir lors de la dormance des moustiques en période inter-épidémique, mais avec une participation mineure à la transmission en période d'épidémie.


Asunto(s)
Aedes/virología , Virus del Dengue/crecimiento & desarrollo , Dengue/epidemiología , Dengue/transmisión , Mosquitos Vectores/virología , Animales , Ciudades , Transmisión Vertical de Enfermedad Infecciosa , México/epidemiología , Estaciones del Año
12.
Parasitology ; 143(7): 860-873, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27045211

RESUMEN

With the recent global spread of a number of mosquito-borne viruses, there is an urgent need to understand the factors that contribute to the ability of viruses to expand into naïve populations. Using dengue and chikungunya viruses as case studies, we detail the necessary components of the expansion process: presence of the mosquito vector; introduction of the virus; and suitable conditions for local transmission. For each component we review the existing modelling approaches that have been used to understand recent emergence events or to assess the risk of future expansions. We identify gaps in our knowledge that are related to each of the distinct aspects of the human-mosquito transmission cycle: mosquito ecology; human-mosquito contact; mosquito-virus interactions; and human-virus interactions. Bridging these gaps poses challenges to both modellers and empiricists, but only through further integration of models and data will we improve our ability to better understand, and ultimately control, several infectious diseases that exert a significant burden on human health.

13.
Euro Surveill ; 21(35)2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27605056

RESUMEN

We investigated the susceptibility of an Italian population of Culex pipiens mosquitoes to Zika virus (ZIKV) infection, tested in parallel with Aedes aegypti, as a positive control. We analysed mosquitoes at 0, 3, 7, 10, 14, 20 and 24 days after an infectious blood meal. Viral RNA was detected in the body of Cx. pipiens up to three days post-infection, but not at later time points. Our results indicate that Cx. pipiens is not susceptible to ZIKV infection.


Asunto(s)
Aedes/virología , Culex/virología , Insectos Vectores/virología , Infección por el Virus Zika/transmisión , Virus Zika/aislamiento & purificación , Virus Zika/patogenicidad , Animales , Susceptibilidad a Enfermedades , Femenino , Reacción en Cadena en Tiempo Real de la Polimerasa , Carga Viral , Virus Zika/genética , Infección por el Virus Zika/virología
14.
Infect Genet Evol ; 123: 105627, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38909667

RESUMEN

BACKGROUND: Hainan Island and the Leizhou Peninsula, the southernmost part of mainland China, are areas where Aedes aegypti and Ae. albopictus are sympatric and are also high-incidence areas of dengue outbreaks in China. Many studies have suggested that Aedes endogenous viral components (EVEs) are enriched in piRNA clusters which can silence incoming viral genomes. Investigation the EVEs present in the piRNA clusters associated with viral infection of Aedes mosquitoes in these regions may provide a theoretical basis for novel transmission-blocking vector control strategies. METHODS: In this study, specific primers for endogenous Flaviviridae elements (EFVEs) and endogenous Rhabdoviridae elements (ERVEs) were used to detect the distribution of Zika virus infection associated EVEs in the genomes of individuals of the two Aedes mosquitoes. Genetic diversity of EVEs with a high detection rate was also analyzed. RESULTS: The results showed that many EVEs associated with Zika virus infection were detected in both Aedes species, with the detection rates were 47.68% to 100% in Ae. aegypti and 36.15% to 92.31% in sympatric Ae. albopictus populations. EVEs detection rates in another 17 Ae. albopictus populations ranged from 29.39% to 89.85%. Genetic diversity analyses of the four EVEs (AaFlavi53, AaRha61, AaRha91 and AaRha100) of Ae. aegypti showed that each had high haplotype diversity and low nucleotide diversity. The number of haplotypes in AaFlavi53 was 8, with the dominant haplotype being Hap_1 and the other 7 haplotypes being further mutated from Hap_1 in a lineage direction. In contrast, the haplotype diversity of the other three ERVEs (AaRha61, AaRha91 and AaRha100) was more diverse and richer, with the haplotype numbers were 9, 15 and 19 respectively. In addition, these EVEs all showed inconsistent patterns of both population differentiation and dispersal compared to neutral evolutionary genes such as the Mitochondrial COI gene. CONCLUSION: The EFVEs and ERVEs tested were present at high frequencies in the field Aedes mosquito populations. The haplotype diversity of the EFVE AaFlavi53 was relatively lower and the three ERVEs (AaRha61, AaRha91, AaRha100) were higher. None of the four EVEs could be indicative of the genetic diversity of the Ae. aegypti population. This study provided theoretical support for the use of EVEs to block arbovirus transmission, but further research is needed into the mechanisms by which these EVEs are antiviral to Aedes mosquitoes.


Asunto(s)
Aedes , Variación Genética , Rhabdoviridae , Aedes/virología , Aedes/genética , Animales , China/epidemiología , Rhabdoviridae/genética , Flaviviridae/genética , Flaviviridae/clasificación , Mosquitos Vectores/virología , Mosquitos Vectores/genética , Filogenia , ARN Interferente Pequeño/genética , Virus Zika/genética , Infección por el Virus Zika/virología , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/epidemiología
15.
Viruses ; 16(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38399990

RESUMEN

Several countries have been using Wolbachia deployments to replace highly competent native Aedes aegypti populations with Wolbachia-carrying mosquitoes with lower susceptibility to arboviruses such as dengue, Zika, and chikungunya. In Rio de Janeiro, Wolbachia deployments started in 2015 and still present a moderate introgression with a modest reduction in dengue cases in humans (38%). Here, we evaluated the vector competence of wild-type and wMel-infected Ae. aegypti with a Brazilian genetic background to investigate whether virus leakage could contribute to the observed outcomes in Brazil. We collected the specimens in three areas of Rio de Janeiro with distinct frequencies of mosquitoes with wMel strain and two areas with wild Ae. aegypti. The mosquitoes were orally exposed to two titers of DENV-1 and the saliva of DENV-1-infected Ae. aegypti was microinjected into wMel-free mosquitoes to check their infectivity. When infected with the high DENV-1 titer, the presence of wMel did not avoid viral infection in mosquitoes' bodies and saliva but DENV-1-infected wMel mosquitoes produced lower viral loads than wMel-free mosquitoes. On the other hand, wMel mosquitoes infected with the low DENV-1 titer were less susceptible to virus infection than wMel-free mosquitoes, although once infected, wMel and wMel-free mosquitoes exhibited similar viral loads in the body and the saliva. Our results showed viral leakage in 60% of the saliva of wMel mosquitoes with Brazilian background; thus, sustained surveillance is imperative to monitor the presence of other circulating DENV-1 strains capable of overcoming the Wolbachia blocking phenotype, enabling timely implementation of action plans.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Wolbachia , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Virus del Dengue/genética , Brasil , Mosquitos Vectores , Wolbachia/genética
16.
J Am Mosq Control Assoc ; 40(3): 145-148, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089686

RESUMEN

It is estimated that there are over 500 species of arboviruses worldwide, with more than 150 of them directly associated with human diseases, the majority of which are zoonotic. Among the main arboviruses circulating in Brazil, dengue, Zika, and chikungunya stand out, all transmitted through a common vector, Aedes aegypti. Given this scenario, the development and implementation of more efficient surveillance strategies become urgent. This study aims to compare and evaluate the efficiency of beetroot peel, Beta vulgaris, as an attractant for Ae. aegypti oviposition under field conditions in the municipality of Agrestina, State of Pernambuco, Brazil. Beetroot peel extract is a cheap and accessible source of geosmin, which holds significant potential as an attractant for mosquitoes due to its resemblance to microbial volatiles found in water bodies rich in organic material. During the study period (November 2023 to April 2024), 40 traps were set in each neighborhood, with 20 of each attractant. Two traps were used per property, one following the traditionally used model (beer yeast infusion) and another containing beetroot peel. Overall, in both analyzed neighborhoods (Campo Novo and Cohab), beetroot peel appeared to be a more efficient attractant for the oviposition of culicids. Beetroot peel showed the highest values in egg abundance and in the analyzed indices.


Asunto(s)
Aedes , Beta vulgaris , Control de Mosquitos , Mosquitos Vectores , Oviposición , Animales , Brasil , Beta vulgaris/química , Femenino , Arbovirus
17.
Trop Med Health ; 52(1): 69, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385264

RESUMEN

BACKGROUND: Dengue is a serious public health problem worldwide, including Panama. During the last years, the number of dengue cases has increased. This may be due to the presence of mosquito populations resistant to insecticides. The aim of this study was to characterize the resistance status, its enzymatic mechanisms and Kdr mutations in wild populations of Aedes aegypti and Aedes albopictus. METHODS: Standard WHO bioassays were performed using insecticide-treated filter papers to determine resistance in populations Ae. aegypti and Ae. albopictus to pyrethroids insecticides, organophosphates, to the carbamate propoxur and to the organochlorine DDT. Biochemical assays were conducted to detect metabolic resistance mechanisms and real-time PCR was performed to determine the frequencies of the Kdr mutations Val1016IIe and F1534C. RESULTS: The strains Ae. aegypti El Coco showed confirmed resistance to deltamethrin (78.5% mortality) and lambda-cyhalothrin (81%), Aguadulce to deltamethrin (79.3%), David to deltamethrin (74.8%) and lambda-cyhalothrin (87.5%) and Puerto Armuelles to permethrin (83%). Aedes aegypti El Empalme showed confirmed resistance to pirimiphos-methyl (62.3% mortality), chlorpyrifos-methyl (55.5%) and propoxur (85.3%). All strains of Ae. albopictus showed possible resistance to PYs and five strains to DDT. Only Ae. albopictus Canto del Llano showed confirmed resistance to pirimiphos-methyl (70% mortality) and malathion (62%). Esterase activity was variable across sites with the most frequent expression of α-EST compared to ß-EST in Ae. aegypti populations. In Ae. Albopictus, the expressed enzymes were ß-EST and MFOs. Through ANOVA, significant differences were established in the levels of enzymatic activity of α- and ß-EST, MFOs and GST, with p < 0.001 in the Ae. aegypti and Ae. albopictus. The Kdr Val1016IIe mutation was detected in Ae. aegypti Aguadulce, El Coco and David. The odds ratio for the Val1016Ile mutation ranged from 0.8 to 20.8 in resistant mosquitoes, indicating the association between pyrethroid phenotypic resistance and the kdr mutation. CONCLUSION: The presence of a varied and generalized resistance, enzymatic mechanisms and the Val1016IIe mutation may be associated with the intensive use and possibly misuse of the different insecticides applied to control Aedes populations. These results highlight the need to develop a program for resistance management. Also, alternative approaches to mosquito control that do not involve insecticides should be explored.

18.
mSphere ; 9(4): e0006224, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38530016

RESUMEN

Mosquito-borne viruses cause various infectious diseases in humans and animals. Tibet orbivirus (TIBOV), a newly identified arbovirus, efficiently replicates in different types of vertebrate and mosquito cells, with its neutralizing antibodies detected in cattle and goats. However, despite being isolated from Culicoides midges, Anopheles, and Culex mosquitoes, there has been a notable absence of systematic studies on its vector competence. Thus, in this study, Aedes aegypti and Culex pipiens pallens were reared in the laboratory to measure vector susceptibility through blood-feeding infection. Furthermore, RNA sequencing was used to examine the overall alterations in the Ae. aegypti transcriptome following TIBOV infection. The results revealed that Ae. aegypti exhibited a high susceptibility to TIBOV compared to Cx. p. pallens. Effective replication of the virus in Ae. aegypti midguts occurred when the blood-feeding titer of TIBOV exceeded 105 plaque-forming units mL-1. Nevertheless, only a few TIBOV RNA-positive samples were detected in the saliva of Ae. aegypti and Cx. p. pallens, suggesting that these mosquito species may not be the primary vectors for TIBOV. Moreover, at 2 dpi of TIBOV, numerous antimicrobial peptides downstream of the Toll and Imd signaling pathways were significantly downregulated in Ae. aegypti, indicating that TIBOV suppressed mosquitos' defense to survive in the vector at an early stage. Subsequently, the stress-activated protein kinase JNK, a crucial component of the MAPK signaling pathway, exhibited significant upregulation. Certain genes were also enriched in the MAPK signaling pathway in TIBOV-infected Ae. aegypti at 7 dpi.IMPORTANCETibet orbivirus (TIBOV) is an understudied arbovirus of the genus Orbivirus. Our study is the first-ever attempt to assess the vector susceptibility of this virus in two important mosquito vectors, Aedes aegypti and Culex pipiens pallens. Additionally, we present transcriptome data detailing the interaction between TIBOV and the immune system of Ae. aegypti, which expands the knowledge about orbivirus infection and its interaction with mosquitoes.


Asunto(s)
Aedes , Culex , Mosquitos Vectores , Orbivirus , Animales , Aedes/virología , Aedes/genética , Culex/virología , Culex/genética , Mosquitos Vectores/virología , Mosquitos Vectores/genética , Orbivirus/genética , Orbivirus/fisiología , Femenino , Replicación Viral , Saliva/virología , Transcriptoma , Tibet
19.
Pest Manag Sci ; 80(6): 2905-2919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38288900

RESUMEN

BACKGROUND: Aedes aegypti is a main vector of arboviral diseases, principally dengue, chikungunya, and Zika. Insecticides remain the most effective vector control method. Pyrethroid is the main insecticide currently used, and the long-term use of insecticides can cause mosquitoes to develop knockdown resistance. Studying the mutation sites and genotypes of Ae. aegypti can reveal the mutation characteristics and regional distribution of the kdr gene in an Ae. aegypti population. Testing for a correlation between the mutation rate in various populations and pyrethrin resistance can clarify the resistance mechanism. RESULTS: The bioassay results showed that all 15 populations are resistant. In the study of the kdr gene, three non-synonymous mutations were identified in the DNA of first generation females from the wild Ae. aegypti population: S989P (TCC-CCC), V1016G (GTA-GGA), and F1534C (TTC-TGC). The mortality rate of the various populations was correlated with the mutation rate at the V1016G + F1534C locus, but not the S989P + V1016G locus. CONCLUSION: Aedes aegypti populations in border regions of Yunnan Province are resistant to permethrin and beta-cyfluthrin. The insecticidal effect of beta-cyfluthrin is stronger than that of permethrin. The mutation rate at sites V1016G + F1534C is negatively correlated with the mortality of Ae. aegypti based on bioassays. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Aedes , Resistencia a los Insecticidas , Insecticidas , Aedes/genética , Aedes/efectos de los fármacos , Animales , Resistencia a los Insecticidas/genética , China , Insecticidas/farmacología , Femenino , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Mutación , Piretrinas/farmacología , Permetrina/farmacología
20.
Environ Sci Pollut Res Int ; 30(5): 12348-12361, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36109480

RESUMEN

We evaluated the individual and combined effects of different environmentally representative concentrations of glyphosate (0, 25, 50, 75, and 100 µg l-1) and aminomethylphosphonic acid (AMPA; 0, 12.5, 25, 37.5, and 50 µg l-1) on the physiology of Aedes aegypti larvae, as well as the capacity of the aquatic macrophyte Salvinia molesta to attenuate those compounds' toxicological effects. Larvae of Ae. aegypti (between the third and fourth larval stages) were exposed for 48 h to glyphosate and/or AMPA in the presence or absence of S. molesta. Glyphosate and AMPA induced sublethal responses in Ae. aegypti larvae during acute exposures. Plants removed up to 49% of the glyphosate and 25% of AMPA from the water, resulting in the exposure of larvae to lower concentration of those compounds in relation to media without plants. As a result, lesser effects of glyphosate and/or AMPA were observed on larval acetylcholinesterase, P450 reductase, superoxide dismutase, mitochondrial electron transport chain enzymes, respiration rates, and lipid peroxidation. In addition to evidence of deleterious effects by media contamination with glyphosate and AMPA on aquatic invertebrates, our results attest to the ability of S. molesta plants to mitigate the toxicological impacts of those contaminants.


Asunto(s)
Herbicidas , Tracheophyta , Animales , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Herbicidas/toxicidad , Acetilcolinesterasa , Invertebrados , Larva , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA